X wave transformation under time discontinuity

Author(s):  
Zoe-Lise Deck-Leger ◽  
Mohamed A. Salem ◽  
Christophe Caloz
1995 ◽  
Vol 17 (4) ◽  
pp. 6-12
Author(s):  
Nguyen Tien Dat ◽  
Dinh Van Manh ◽  
Nguyen Minh Son

A mathematical model on linear wave propagation toward shore is chosen and corresponding software is built. The wave transformation outside and inside the surf zone is considered including the diffraction effect. The model is tested by laboratory and field data and gave reasonables results.


Author(s):  
Sergey Kuznetsov ◽  
Sergey Kuznetsov ◽  
Yana Saprykina ◽  
Yana Saprykina ◽  
Boris Divinskiy ◽  
...  

On the base of experimental data it was revealed that type of wave breaking depends on wave asymmetry against the vertical axis at wave breaking point. The asymmetry of waves is defined by spectral structure of waves: by the ratio between amplitudes of first and second nonlinear harmonics and by phase shift between them. The relative position of nonlinear harmonics is defined by a stage of nonlinear wave transformation and the direction of energy transfer between the first and second harmonics. The value of amplitude of the second nonlinear harmonic in comparing with first harmonic is significantly more in waves, breaking by spilling type, than in waves breaking by plunging type. The waves, breaking by plunging type, have the crest of second harmonic shifted forward to one of the first harmonic, so the waves have "saw-tooth" shape asymmetrical to vertical axis. In the waves, breaking by spilling type, the crests of harmonic coincides and these waves are symmetric against the vertical axis. It was found that limit height of breaking waves in empirical criteria depends on type of wave breaking, spectral peak period and a relation between wave energy of main and second nonlinear wave harmonics. It also depends on surf similarity parameter defining conditions of nonlinear wave transformations above inclined bottom.


1992 ◽  
Vol 35 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Xiping Yu ◽  
Masahiko Isobe ◽  
Akira Watanabe

2021 ◽  
Vol 9 (6) ◽  
pp. 635
Author(s):  
Hyeok Jin ◽  
Kideok Do ◽  
Sungwon Shin ◽  
Daniel Cox

Coastal dunes are important morphological features for both ecosystems and coastal hazard mitigation. Because understanding and predicting dune erosion phenomena is very important, various numerical models have been developed to improve the accuracy. In the present study, a process-based model (XBeachX) was tested and calibrated to improve the accuracy of the simulation of dune erosion from a storm event by adjusting the coefficients in the model and comparing it with the large-scale experimental data. The breaker slope coefficient was calibrated to predict cross-shore wave transformation more accurately. To improve the prediction of the dune erosion profile, the coefficients related to skewness and asymmetry were adjusted. Moreover, the bermslope coefficient was calibrated to improve the simulation performance of the bermslope near the dune face. Model performance was assessed based on the model-data comparisons. The calibrated XBeachX successfully predicted wave transformation and dune erosion phenomena. In addition, the results obtained from other two similar experiments on dune erosion with the same calibrated set matched well with the observed wave and profile data. However, the prediction of underwater sand bar evolution remains a challenge.


Author(s):  
Kuo-Ching Chen

This paper is concerned with the modelling of a magnetorheological (MR) fluid in the presence of an applied magnetic field as a twofolded mixture—a macroscopic fluid continuum and mesoscopic multi-solid continua. By assigning to each solid particle a vectorial mesoscopic variable, which is defined as the nearest relative position vector with respect to other particles, the solid medium of the MR fluid is further treated as a mixture consisting of different components, specified by these mesoscopic variables. The treatment of multi-solid continua is similar to that in the mesoscopic theory of liquid crystals. However, the key difference lies in the fact that the time-discontinuity of the defined vectorial mesoscopic variable will give rise to a ‘pseudo’ chemical reaction in the solid continuum. The equation of the phenomenological mesoscopic distribution function of the solid continuum then has an additional production term from the pseudo chemical reaction, analogous to the collision term appearing in the Boltzmann equation. The mesoscopic and macroscopic balance equations are then derived and by assuming the special constitutive relations the macroscopic equation for the second moment of the distribution function can be obtained.


2011 ◽  
Vol 15 ◽  
pp. 3808-3813 ◽  
Author(s):  
Xuanjing Shen ◽  
Wei Wei ◽  
Jianwu Long ◽  
Qingji Qian

Sign in / Sign up

Export Citation Format

Share Document