scholarly journals Process-Based Model Prediction of Coastal Dune Erosion through Parametric Calibration

2021 ◽  
Vol 9 (6) ◽  
pp. 635
Author(s):  
Hyeok Jin ◽  
Kideok Do ◽  
Sungwon Shin ◽  
Daniel Cox

Coastal dunes are important morphological features for both ecosystems and coastal hazard mitigation. Because understanding and predicting dune erosion phenomena is very important, various numerical models have been developed to improve the accuracy. In the present study, a process-based model (XBeachX) was tested and calibrated to improve the accuracy of the simulation of dune erosion from a storm event by adjusting the coefficients in the model and comparing it with the large-scale experimental data. The breaker slope coefficient was calibrated to predict cross-shore wave transformation more accurately. To improve the prediction of the dune erosion profile, the coefficients related to skewness and asymmetry were adjusted. Moreover, the bermslope coefficient was calibrated to improve the simulation performance of the bermslope near the dune face. Model performance was assessed based on the model-data comparisons. The calibrated XBeachX successfully predicted wave transformation and dune erosion phenomena. In addition, the results obtained from other two similar experiments on dune erosion with the same calibrated set matched well with the observed wave and profile data. However, the prediction of underwater sand bar evolution remains a challenge.

Author(s):  
Sungwon Shin ◽  
Jichang Kim ◽  
Jeseon Yoo ◽  
Kideok Do ◽  
Tae Soo Chang ◽  
...  

The coastal sand dune is an important natural coastal protection system in the nearshore region from storm wave damage. USACE (2013) introduced coastal dune as Nature and Nature-Based Feature for coastal resilience. Therefore, accurately predicting the dune erosion and sediment transport is very important not only to protect the coastal community from the extreme wave but also to provide design guideline for restoration. However, the ability to accurately predict the coastal dune morphodynamics has not been enough improved. The main objective of this study is to investigate erosion and deposition mechanisms of dune and sand bar by obtaining the synoptic data set of movable bed experiment during the entire storm event. Using the experimental data, this study tried to verify the numerical model (XBeachX). Moreover, box cores were used to track the storm history in surf and swash zone.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/E-Itkn36rLQ


2010 ◽  
Vol 25 (3) ◽  
pp. 885-894 ◽  
Author(s):  
José Roberto Rozante ◽  
Demerval Soares Moreira ◽  
Luis Gustavo G. de Goncalves ◽  
Daniel A. Vila

Abstract The measure of atmospheric model performance is highly dependent on the quality of the observations used in the evaluation process. In the particular case of operational forecast centers, large-scale datasets must be made available in a timely manner for continuous assessment of model results. Numerical models and surface observations usually work at distinct spatial scales (i.e., areal average in a regular grid versus point measurements), making direct comparison difficult. Alternatively, interpolation methods are employed for mapping observational data to regular grids and vice versa. A new technique (hereafter called MERGE) to combine Tropical Rainfall Measuring Mission (TRMM) satellite precipitation estimates with surface observations over the South American continent is proposed and its performance is evaluated for the 2007 summer and winter seasons. Two different approaches for the evaluation of the performance of this product against observations were tested: a cross-validation subsampling of the entire continent and another subsampling of only areas with sparse observations. Results show that over areas with a high density of observations, the MERGE technique’s performance is equivalent to that of simply averaging the stations within the grid boxes. However, over areas with sparse observations, MERGE shows superior results.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 437
Author(s):  
Jin Kang ◽  
Yonggui Wang ◽  
Jing Xu ◽  
Shuihua Yang ◽  
Haobo Hou

High-precision and efficiently distributed discrete element models for water environment simulation are urgently needed in large-scale river network areas, but most distributed discrete element models are serially computed and need performance improving. Parallel computing and other common methods for models’ high performance have large labor costs and are complicated. We put forward a new mesh reduced method for promoting computational efficiency with grid re-organization according to the structure and algorithm characteristics of 2D and 3D numerical models. This simple and cheap method was adapted to a classical three-dimensional hydrodynamic and sediment model (ECOMSED) for model improvement and effective evaluation. Six schemes with different grids were made to investigate the performance of this method in the river network area of the Three Gorges Reservoir Basin. It showed good characteristics of simulation performance and model speed-up. We concluded that the method is viable and efficient for optimizing distributed discrete element models.


2021 ◽  
Author(s):  
Ali Abdolali ◽  
Andre van der Westhuysen ◽  
Zaizhong Ma ◽  
Avichal Mehra ◽  
Aron Roland ◽  
...  

AbstractVarious uncertainties exist in a hindcast due to the inabilities of numerical models to resolve all the complicated atmosphere-sea interactions, and the lack of certain ground truth observations. Here, a comprehensive analysis of an atmospheric model performance in hindcast mode (Hurricane Weather and Research Forecasting model—HWRF) and its 40 ensembles during severe events is conducted, evaluating the model accuracy and uncertainty for hurricane track parameters, and wind speed collected along satellite altimeter tracks and at stationary source point observations. Subsequently, the downstream spectral wave model WAVEWATCH III is forced by two sets of wind field data, each includes 40 members. The first ones are randomly extracted from original HWRF simulations and the second ones are based on spread of best track parameters. The atmospheric model spread and wave model error along satellite altimeters tracks and at stationary source point observations are estimated. The study on Hurricane Irma reveals that wind and wave observations during this extreme event are within ensemble spreads. While both Models have wide spreads over areas with landmass, maximum uncertainty in the atmospheric model is at hurricane eye in contrast to the wave model.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 176
Author(s):  
Iñigo Aramendia ◽  
Unai Fernandez-Gamiz ◽  
Adrian Martinez-San-Vicente ◽  
Ekaitz Zulueta ◽  
Jose Manuel Lopez-Guede

Large-scale energy storage systems (ESS) are nowadays growing in popularity due to the increase in the energy production by renewable energy sources, which in general have a random intermittent nature. Currently, several redox flow batteries have been presented as an alternative of the classical ESS; the scalability, design flexibility and long life cycle of the vanadium redox flow battery (VRFB) have made it to stand out. In a VRFB cell, which consists of two electrodes and an ion exchange membrane, the electrolyte flows through the electrodes where the electrochemical reactions take place. Computational Fluid Dynamics (CFD) simulations are a very powerful tool to develop feasible numerical models to enhance the performance and lifetime of VRFBs. This review aims to present and discuss the numerical models developed in this field and, particularly, to analyze different types of flow fields and patterns that can be found in the literature. The numerical studies presented in this review are a helpful tool to evaluate several key parameters important to optimize the energy systems based on redox flow technologies.


2000 ◽  
Vol 663 ◽  
Author(s):  
J. Samper ◽  
R. Juncosa ◽  
V. Navarro ◽  
J. Delgado ◽  
L. Montenegro ◽  
...  

ABSTRACTFEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project dealing with the bentonite engineered barrier designed for sealing and containment of waste in a high level radioactive waste repository (HLWR). It includes two main experiments: an situ full-scale test performed at Grimsel (GTS) and a mock-up test operating since February 1997 at CIEMAT facilities in Madrid (Spain) [1,2,3]. One of the objectives of FEBEX is the development and testing of conceptual and numerical models for the thermal, hydrodynamic, and geochemical (THG) processes expected to take place in engineered clay barriers. A significant improvement in coupled THG modeling of the clay barrier has been achieved both in terms of a better understanding of THG processes and more sophisticated THG computer codes. The ability of these models to reproduce the observed THG patterns in a wide range of THG conditions enhances the confidence in their prediction capabilities. Numerical THG models of heating and hydration experiments performed on small-scale lab cells provide excellent results for temperatures, water inflow and final water content in the cells [3]. Calculated concentrations at the end of the experiments reproduce most of the patterns of measured data. In general, the fit of concentrations of dissolved species is better than that of exchanged cations. These models were later used to simulate the evolution of the large-scale experiments (in situ and mock-up). Some thermo-hydrodynamic hypotheses and bentonite parameters were slightly revised during TH calibration of the mock-up test. The results of the reference model reproduce simultaneously the observed water inflows and bentonite temperatures and relative humidities. Although the model is highly sensitive to one-at-a-time variations in model parameters, the possibility of parameter combinations leading to similar fits cannot be precluded. The TH model of the “in situ” test is based on the same bentonite TH parameters and assumptions as for the “mock-up” test. Granite parameters were slightly modified during the calibration process in order to reproduce the observed thermal and hydrodynamic evolution. The reference model captures properly relative humidities and temperatures in the bentonite [3]. It also reproduces the observed spatial distribution of water pressures and temperatures in the granite. Once calibrated the TH aspects of the model, predictions of the THG evolution of both tests were performed. Data from the dismantling of the in situ test, which is planned for the summer of 2001, will provide a unique opportunity to test and validate current THG models of the EBS.


2021 ◽  
Author(s):  
Moctar Dembélé ◽  
Bettina Schaefli ◽  
Grégoire Mariéthoz

<p>The diversity of remotely sensed or reanalysis-based rainfall data steadily increases, which on one hand opens new perspectives for large scale hydrological modelling in data scarce regions, but on the other hand poses challenging question regarding parameter identification and transferability under multiple input datasets. This study analyzes the variability of hydrological model performance when (1) a set of parameters is transferred from the calibration input dataset to a different meteorological datasets and reversely, when (2) an input dataset is used with a parameter set, originally calibrated for a different input dataset.</p><p>The research objective is to highlight the uncertainties related to input data and the limitations of hydrological model parameter transferability across input datasets. An ensemble of 17 rainfall datasets and 6 temperature datasets from satellite and reanalysis sources (Dembélé et al., 2020), corresponding to 102 combinations of meteorological data, is used to force the fully distributed mesoscale Hydrologic Model (mHM). The mHM model is calibrated for each combination of meteorological datasets, thereby resulting in 102 calibrated parameter sets, which almost all give similar model performance. Each of the 102 parameter sets is used to run the mHM model with each of the 102 input datasets, yielding 10404 scenarios to that serve for the transferability tests. The experiment is carried out for a decade from 2003 to 2012 in the large and data-scarce Volta River basin (415600 km2) in West Africa.</p><p>The results show that there is a high variability in model performance for streamflow (mean CV=105%) when the parameters are transferred from the original input dataset to other input datasets (test 1 above). Moreover, the model performance is in general lower and can drop considerably when parameters obtained under all other input datasets are transferred to a selected input dataset (test 2 above). This underlines the need for model performance evaluation when different input datasets and parameter sets than those used during calibration are used to run a model. Our results represent a first step to tackle the question of parameter transferability to climate change scenarios. An in-depth analysis of the results at a later stage will shed light on which model parameterizations might be the main source of performance variability.</p><p>Dembélé, M., Schaefli, B., van de Giesen, N., & Mariéthoz, G. (2020). Suitability of 17 rainfall and temperature gridded datasets for large-scale hydrological modelling in West Africa. Hydrology and Earth System Sciences (HESS). https://doi.org/10.5194/hess-24-5379-2020</p>


Ocean Science ◽  
2015 ◽  
Vol 11 (6) ◽  
pp. 879-896 ◽  
Author(s):  
M. Haller ◽  
F. Janssen ◽  
J. Siddorn ◽  
W. Petersen ◽  
S. Dick

Abstract. For understanding and forecasting of hydrodynamics in coastal regions, numerical models have served as an important tool for many years. In order to assess the model performance, we compared simulations to observational data of water temperature and salinity. Observations were available from FerryBox transects in the southern North Sea and, additionally, from a fixed platform of the MARNET network. More detailed analyses have been made at three different stations, located off the English eastern coast, at the Oyster Ground and in the German Bight. FerryBoxes installed on ships of opportunity (SoO) provide high-frequency surface measurements along selected tracks on a regular basis. The results of two operational hydrodynamic models have been evaluated for two different time periods: BSHcmod v4 (January 2009 to April 2012) and FOAM AMM7 NEMO (April 2011 to April 2012). While they adequately simulate temperature, both models underestimate salinity, especially near the coast in the southern North Sea. Statistical errors differ between the two models and between the measured parameters. The root mean square error (RMSE) of water temperatures amounts to 0.72 °C (BSHcmod v4) and 0.44 °C (AMM7), while for salinity the performance of BSHcmod is slightly better (0.68 compared to 1.1). The study results reveal weaknesses in both models, in terms of variability, absolute levels and limited spatial resolution. Simulation of the transition zone between the coasts and the open sea is still a demanding task for operational modelling. Thus, FerryBox data, combined with other observations with differing temporal and spatial scales, can serve as an invaluable tool not only for model evaluation, but also for model optimization by assimilation of such high-frequency observations.


Author(s):  
Raffaele Capuano ◽  
Thomas Fend ◽  
Bernhard Hoffschmidt ◽  
Robert Pitz-Paal

Due to the continuous global increase in energy demand, Concentrated Solar Power (CSP) represents an excellent alternative, or add-on to existing systems for the production of energy on a large scale. In some of these systems, the Solar Power Tower plants (SPT), the conversion of solar radiation into heat occurs in certain components defined as solar receivers, placed in correspondence of the focus of the reflected sunlight. In a particular type of solar receivers, defined as volumetric, the use of porous materials is foreseen. These receivers are characterized by a porous structure called absorber. The latter, hit by the reflected solar radiation, transfers the heat to the evolving fluid, generally air subject to natural convection. The proper design of these elements is essential in order to achieve high efficiencies, making such structures extremely beneficial for the overall performances of the energy production process. In the following study, a parametric analysis and an optimized characterization of the structure have been performed with the use of self-developed numerical models. The knowledge and results gained through this study have been used to define an optimization path in order to improve the absorber microstructure, starting from the current in-house state-of-the-art technology until obtaining a new advanced geometry.


2009 ◽  
Vol 137 (11) ◽  
pp. 4030-4046 ◽  
Author(s):  
Daniel F. Steinhoff ◽  
Saptarshi Chaudhuri ◽  
David H. Bromwich

Abstract A case study illustrating cloud processes and other features associated with the Ross Ice Shelf airstream (RAS), in Antarctica, is presented. The RAS is a semipermanent low-level wind regime primarily over the western Ross Ice Shelf, linked to the midlatitude circulation and formed from terrain-induced and large-scale forcing effects. An integrated approach utilizes Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery, automatic weather station (AWS) data, and Antarctic Mesoscale Prediction System (AMPS) forecast output to study the synoptic-scale and mesoscale phenomena involved in cloud formation over the Ross Ice Shelf during a RAS event. A synoptic-scale cyclone offshore of Marie Byrd Land draws moisture across West Antarctica to the southern base of the Ross Ice Shelf. Vertical lifting associated with flow around the Queen Maud Mountains leads to cloud formation that extends across the Ross Ice Shelf to the north. The low-level cloud has a warm signature in thermal infrared imagery, resembling a surface feature of turbulent katabatic flow typically ascribed to the RAS. Strategically placed AWS sites allow assessment of model performance within and outside of the RAS signature. AMPS provides realistic simulation of conditions aloft but experiences problems at low levels due to issues with the model PBL physics. Key meteorological features of this case study, within the context of previous studies on longer time scales, are inferred to be common occurrences. The assumption that warm thermal infrared signatures are surface features is found to be too restrictive.


Sign in / Sign up

Export Citation Format

Share Document