A Two-Stage Image Segmentation Method Based on Watershed and Fuzzy C-Means

2008 ◽  
Author(s):  
Yong Zhu ◽  
Naixue Xiong ◽  
Ruhan He
2019 ◽  
Vol 8 (4) ◽  
pp. 9548-9551

Fuzzy c-means clustering is a popular image segmentation technique, in which a single pixel belongs to multiple clusters, with varying degree of membership. The main drawback of this method is it sensitive to noise. This method can be improved by incorporating multiresolution stationary wavelet analysis. In this paper we develop a robust image segmentation method using Fuzzy c-means clustering and wavelet transform. The experimental result shows that the proposed method is more accurate than the Fuzzy c-means clustering.


2016 ◽  
Vol 7 (3) ◽  
Author(s):  
Andi Baso Kaswar ◽  
Agus Zainal Arifin ◽  
Arya Yudhi Wijaya

Abstract. Fuzzy C-Means segmentation algorithm based on Mahalanobis distance can be utilized to segment tuna fish image. However, initialization of pixels membership value and clusters centroid randomly cause the segmentation process become inefficient in terms of iteration and time of computation. This paper proposes a new method for tuna fish image segmentation by Mahalanobis Histogram Thresholding (M-HT) and Mahalanobis Fuzzy C-Means (MFCM). The proposed method consists of three main phases, namely: centroid initialization, pixel clustering and accuracy improvement. The experiment carried out obtained average of iteration amount is as many as 66 iteration with average of segmentation time as many as 162.03 second. While the average of Accuracy is 98.54%, average of Missclassification Error is 1.46%. The result shows that the proposed method can improve the efficiency of segmentation method in terms of number of iterations and time of segmentation. Besides that, the proposed method can give more accurate segmentation result compared with the conventional method.Keywords: Tuna Fish Image, Segmentation, Fuzzy Clustering, Histogram Thresholding, Mahalanobis Distance. Abstrak. Algoritma segmentasi Fuzzy C-Means berbasis jarak Mahalanobis dapat digunakan untuk mensegmentasi ikan tuna. Namun, inisialisasi derajat keanggotaan piksel dan centroid klaster secara random mengakibatkan proses segmentasi menjadi tidak efisien dalam hal iterasi dan waktu komputasi. Penelitian ini mengusulkan metode baru untuk segmentasi citra ikan tuna dengan Mahalanobis Histogram Thresholding (M-HT) dan Mahalanobis Fuzzy C-Means (MFCM). Metode ini terdiri atas tiga tahap utama, yaitu: inisialisasi centroid, pengklasteran piksel dan peningkatan akurasi. Berdasarkan hasil ekseprimen, diperoleh rata-rata jumlah iterasi sebanyak 66 iterasi dengan rata-rata waktu segmentasi 162,03 detik. Rata-rata Akurasi 98,54% dengan rata-rata tingkat Missclassification Error 1,46%. Hasil yang diperoleh menunjukkan bahwa metode yang diusulkan dapat meningkatkan efisiensi metode segmentasi dalam hal jumlah iterasi dan waktu segmentasi. Selain itu, metode yang diusulkan dapat memberikan hasil segmentasi yang lebih akurat dibandingkan dengan metode konvensional.Kata Kunci: Citra Ikan Tuna, Segmentasi, Fuzzy Clustering, Histogram Thresholding, Jarak Mahalanobis.


2011 ◽  
Vol 121-126 ◽  
pp. 1794-1798
Author(s):  
Kun Zhao ◽  
Yi Ping Xu ◽  
Fu Yuan Peng ◽  
Guo Liang Yang ◽  
Xin Wei Wang

In order to make segmentation more robust and accurate in the underwater environment, a two-stage segmentation method is proposed in this paper. In preprocessing stage, a dual-band enhancing technique is used to preserve the target contour and at the same time eliminate the fake edges generated by the noises; in segmentation stage, edge-grouping method is chosen for its advantageous characteristics over noisy images. Experimental results show that the proposed method can get a better performance both in stability and accuracy.


Author(s):  
B. Ojeda-Magaña ◽  
J. Quintanilla-Domínguez ◽  
R. Ruelas ◽  
L. Gómez Barba ◽  
D. Andina

A new sub-segmentation method has been proposed in 2009 which, in digital images, help us to identify the typical pixels, as well as the less representative pixels or atypical of each segmented region. This method is based on the Possibilistic Fuzzy c-Means (PFCM) clustering algorithm, as it integrates absolute and relative memberships. Now, the segmentation problem is related to isolate each one of the objects present in an image. However, and considering only one segmented object or region represented by gray levels as its only feature, the totality of pixels is divided in two basic groups, the group of pixels representing the object, and the others that do not represent it. In the former group, there is a sub-group of pixels near the most representative element of the object, the prototype, and identified here as the typical pixels, and a sub-group corresponding to the less representative pixels of the object, which are the atypical pixels, and generally located at the borders of the pixels representing the object. Besides, the sub-group of atypical pixels presents greater tones (brighter or towards the white color) or smaller tones (darker or towards black color). So, the sub-segmentation method offers the capability to identify the sub-region of atypical pixels, although without performing a differentiation between the brighter and the darker ones. Hence, the proposal of this work contributes to the problem of image segmentation with the improvement on the detection of the atypical sub-regions, and clearly recognizing between both kind of atypical pixels, because in many cases only the brighter or the darker atypical pixels are the ones that represent the object of interest in an image, depending on the problem to be solved. In this study, two real cases are used to show the contribution of this proposal; the first case serves to demonstrate the pores detection in soil images represented by the darker atypical pixels, and the second one to demonstrate the detection of microcalcifications in mammograms, represented in this case by the brighter atypical pixels.


Sign in / Sign up

Export Citation Format

Share Document