scholarly journals Segmentasi Citra Ikan Tuna dengan Mahalanobis Histogram Thresholding dan Mahalanobis Fuzzy C-Means

2016 ◽  
Vol 7 (3) ◽  
Author(s):  
Andi Baso Kaswar ◽  
Agus Zainal Arifin ◽  
Arya Yudhi Wijaya

Abstract. Fuzzy C-Means segmentation algorithm based on Mahalanobis distance can be utilized to segment tuna fish image. However, initialization of pixels membership value and clusters centroid randomly cause the segmentation process become inefficient in terms of iteration and time of computation. This paper proposes a new method for tuna fish image segmentation by Mahalanobis Histogram Thresholding (M-HT) and Mahalanobis Fuzzy C-Means (MFCM). The proposed method consists of three main phases, namely: centroid initialization, pixel clustering and accuracy improvement. The experiment carried out obtained average of iteration amount is as many as 66 iteration with average of segmentation time as many as 162.03 second. While the average of Accuracy is 98.54%, average of Missclassification Error is 1.46%. The result shows that the proposed method can improve the efficiency of segmentation method in terms of number of iterations and time of segmentation. Besides that, the proposed method can give more accurate segmentation result compared with the conventional method.Keywords: Tuna Fish Image, Segmentation, Fuzzy Clustering, Histogram Thresholding, Mahalanobis Distance. Abstrak. Algoritma segmentasi Fuzzy C-Means berbasis jarak Mahalanobis dapat digunakan untuk mensegmentasi ikan tuna. Namun, inisialisasi derajat keanggotaan piksel dan centroid klaster secara random mengakibatkan proses segmentasi menjadi tidak efisien dalam hal iterasi dan waktu komputasi. Penelitian ini mengusulkan metode baru untuk segmentasi citra ikan tuna dengan Mahalanobis Histogram Thresholding (M-HT) dan Mahalanobis Fuzzy C-Means (MFCM). Metode ini terdiri atas tiga tahap utama, yaitu: inisialisasi centroid, pengklasteran piksel dan peningkatan akurasi. Berdasarkan hasil ekseprimen, diperoleh rata-rata jumlah iterasi sebanyak 66 iterasi dengan rata-rata waktu segmentasi 162,03 detik. Rata-rata Akurasi 98,54% dengan rata-rata tingkat Missclassification Error 1,46%. Hasil yang diperoleh menunjukkan bahwa metode yang diusulkan dapat meningkatkan efisiensi metode segmentasi dalam hal jumlah iterasi dan waktu segmentasi. Selain itu, metode yang diusulkan dapat memberikan hasil segmentasi yang lebih akurat dibandingkan dengan metode konvensional.Kata Kunci: Citra Ikan Tuna, Segmentasi, Fuzzy Clustering, Histogram Thresholding, Jarak Mahalanobis.

2019 ◽  
Vol 8 (4) ◽  
pp. 9548-9551

Fuzzy c-means clustering is a popular image segmentation technique, in which a single pixel belongs to multiple clusters, with varying degree of membership. The main drawback of this method is it sensitive to noise. This method can be improved by incorporating multiresolution stationary wavelet analysis. In this paper we develop a robust image segmentation method using Fuzzy c-means clustering and wavelet transform. The experimental result shows that the proposed method is more accurate than the Fuzzy c-means clustering.


2011 ◽  
Vol 211-212 ◽  
pp. 793-797
Author(s):  
Chin Chun Chen ◽  
Yuan Horng Lin ◽  
Jeng Ming Yih ◽  
Sue Fen Huang

Apply interpretive structural modeling to construct knowledge structure of linear algebra. New fuzzy clustering algorithms improved fuzzy c-means algorithm based on Mahalanobis distance has better performance than fuzzy c-means algorithm. Each cluster of data can easily describe features of knowledge structures individually. The results show that there are six clusters and each cluster has its own cognitive characteristics. The methodology can improve knowledge management in classroom more feasible.


2011 ◽  
Vol 135-136 ◽  
pp. 50-55
Author(s):  
Yuan Bin Hou ◽  
Yang Meng ◽  
Jin Bo Mao

According to the requirements of efficient image segmentation for the manipulator self-recognition target, a method of image segmentation based on improved ant colony algorithm is proposed in the paper. In order to avoid segmentation errors by local optimal solution and the stagnation of convergence, ant colony algorithm combined with immune algorithm are taken to traversing the whole image, which uses pheromone as standard. Further, immunization selection through vaccination optimizes the heuristic information, then it improves the efficiency of ergodic process, and shortens the time of segmentation effectively. Simulation and experimental of image segmentation result shows that this algorithm can get better effect than generic ant colony algorithm, at the same condition, segmentation time is shortened by 6.8%.


2019 ◽  
Vol 26 (1) ◽  
pp. 37-51 ◽  
Author(s):  
Jie Zhang ◽  
Yintao Zhou ◽  
Kaijian Xia ◽  
Yizhang Jiang ◽  
Yuan Liu

2014 ◽  
Vol 962-965 ◽  
pp. 2797-2800
Author(s):  
Hui Jun Yu ◽  
Wu Wan ◽  
Chen Yun ◽  
Cai Biao Chen

In the digital image processing, Otsu algorithm uses the criterion of maximum between-cluster to make image segmentation. In this paper, combined with drug defect detection requirements, the new threshold output functions is put forward which studies on the existing two-dimensional Otsu algorithm in a deep way from the computing complexity and integral effect. The improved algorithm improves the computing speed of the algorithm and optimizes the segmentation effect which is a good segmentation algorithm. The effectiveness of the proposed algorithm has been proved by relevant experiments, and the medicine image segmentation result show that the improved algorithm has a good application prospect in drug defect detection.


2018 ◽  
Vol 11 (1) ◽  
pp. 52 ◽  
Author(s):  
Moch Zawaruddin Abdullah ◽  
Dinial Utami Nurul Qomariah ◽  
Lafnidita Farosanti ◽  
Agus Zainal Arifin

Tuna fish image classification is an important part to sort out the type and quality of the tuna based upon the shape. The image of tuna should have good segmentation results before entering the classification stage. It has uneven lighting and complex texture resulting in inappropriate segmentation. This research proposed method of automatic determination seeded random walker in the watershed region for tuna image segmentation. Random walker is a noise-resistant segmentation method that requires two types of seeds defined by the user, the seed pixels for background and seed pixels for the object. We evaluated the proposed method on 30 images of tuna using relative foreground area error (RAE), misclassification error (ME), and modified Hausdroff distances (MHD) evaluation methods with values of 4.38%, 1.34% and 1.11%, respectively. This suggests that the seeded random walker method is more effective than exiting methods for tuna image segmentation.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3722
Author(s):  
Hang Ren ◽  
Taotao Hu

This paper addresses the lack of robustness of feature selection algorithms for fuzzy clustering segmentation with the Gaussian mixture model. Assuming that the neighbourhood pixels and the centre pixels obey the same distribution, a Markov method is introduced to construct the prior probability distribution and achieve the membership degree regularisation constraint for clustering sample points. Then, a noise smoothing factor is introduced to optimise the prior probability constraint. Second, a power index is constructed by combining the classification membership degree and prior probability since the Kullback–Leibler (KL) divergence of the noise smoothing factor is used to supervise the prior probability; this probability is embedded into Fuzzy Superpixels Fuzzy C-means (FSFCM) as a regular factor. This paper proposes a fuzzy clustering image segmentation algorithm based on an adaptive feature selection Gaussian mixture model with neighbourhood information constraints. To verify the segmentation performance and anti-noise robustness of the improved algorithm, the fuzzy C-means clustering algorithm Fuzzy C-means (FCM), FSFCM, Spatially Variant Finite Mixture Model (SVFMM), EGFMM, extended Gaussian mixture model (EGMM), adaptive feature selection robust fuzzy clustering segmentation algorithm (AFSFCM), fast and robust spatially constrained Gaussian mixture model (GMM) for image segmentation (FRSCGMM), and improve method are used to segment grey images containing Gaussian noise, salt-and-pepper noise, multiplicative noise and mixed noise. The peak signal-to-noise ratio (PSNR) and the error rate (MCR) are used as the theoretical basis for assessing the segmentation results. The improved algorithm indicators proposed in this paper are optimised. The improved algorithm yields increases of 0.1272–12.9803 dB, 1.5501–13.4396 dB, 1.9113–11.2613 dB and 1.0233–10.2804 dB over the other methods, and the Misclassification rate (MSR) decreases by 0.32–37.32%, 5.02–41.05%, 0.3–21.79% and 0.9–30.95% compared to that with the other algorithms. It is verified that the segmentation results of the improved algorithm have good regional consistency and strong anti-noise robustness, and they meet the needs of noisy image segmentation.


Sign in / Sign up

Export Citation Format

Share Document