An Effective Road Extraction Method from Remote Sensing Images Based on Self-Adaptive Threshold Function

Author(s):  
Zhuozheng Wang ◽  
Meng Zhang ◽  
Wei Liu
Author(s):  
X. Zhang ◽  
C. K. Zhang ◽  
H. M. Li ◽  
Z. Luo

Abstract. Aiming at the road extraction in high-resolution remote sensing images, the stroke width transformation algorithm is greatly affected by surrounding objects, and it is impossible to directly obtain high-precision road information. A new road extraction method combining stroke width transformation and mean drift is proposed. In order to reduce road holes and discontinuities, and preserve better edge information, the algorithm first performs denoising preprocessing by means of median filtering to the pre-processed image. Then, the mean shift algorithm is used for image segmentation. The adjacent parts of the image with similar texture and spectrum are treated as the same class, and then the fine areas less than the maximum stroke width are reduced. On the basis , the road information is extracted by the stroke width transformation algorithm, and the information also contains a small amount of interference information such as spots (non-road). In order to further improve road extraction accuracy and reduce speckle and non-road area interference, the basic operations and combinations in mathematical morphology are used to optimize it. The experimental results show that the proposed algorithm can accurately extract the roads on high-resolution remote sensing images, and the better the road features, the better the extraction effect. However, the applicability of the algorithm is greatly affected by the surrounding objects.


2021 ◽  
Vol 11 (11) ◽  
pp. 5050
Author(s):  
Jiahai Tan ◽  
Ming Gao ◽  
Kai Yang ◽  
Tao Duan

Road extraction from remote sensing images has attracted much attention in geospatial applications. However, the existing methods do not accurately identify the connectivity of the road. The identification of the road pixels may be interfered with by the abundant ground such as buildings, trees, and shadows. The objective of this paper is to enhance context and strip features of the road by designing UNet-like architecture. The overall method first enhances the context characteristics in the segmentation step and then maintains the stripe characteristics in a refinement step. The segmentation step exploits an attention mechanism to enhance the context information between the adjacent layers. To obtain the strip features of the road, the refinement step introduces the strip pooling in a refinement network to restore the long distance dependent information of the road. Extensive comparative experiments demonstrate that the proposed method outperforms other methods, achieving an overall accuracy of 98.25% on the DeepGlobe dataset, and 97.68% on the Massachusetts dataset.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4115 ◽  
Author(s):  
Yuxia Li ◽  
Bo Peng ◽  
Lei He ◽  
Kunlong Fan ◽  
Zhenxu Li ◽  
...  

Roads are vital components of infrastructure, the extraction of which has become a topic of significant interest in the field of remote sensing. Because deep learning has been a popular method in image processing and information extraction, researchers have paid more attention to extracting road using neural networks. This article proposes the improvement of neural networks to extract roads from Unmanned Aerial Vehicle (UAV) remote sensing images. D-Linknet was first considered for its high performance; however, the huge scale of the net reduced computational efficiency. With a focus on the low computational efficiency problem of the popular D-LinkNet, this article made some improvements: (1) Replace the initial block with a stem block. (2) Rebuild the entire network based on ResNet units with a new structure, allowing for the construction of an improved neural network D-Linknetplus. (3) Add a 1 × 1 convolution layer before DBlock to reduce the input feature maps, reducing parameters and improving computational efficiency. Add another 1 × 1 convolution layer after DBlock to recover the required number of output channels. Accordingly, another improved neural network B-D-LinknetPlus was built. Comparisons were performed between the neural nets, and the verification were made with the Massachusetts Roads Dataset. The results show improved neural networks are helpful in reducing the network size and developing the precision needed for road extraction.


Sign in / Sign up

Export Citation Format

Share Document