scholarly journals A Quickly Automatic Road Extraction Method for High-Resolution Remote Sensing Images

2015 ◽  
Vol 03 (02) ◽  
pp. 27-33 ◽  
Author(s):  
琳 李
Author(s):  
X. Zhang ◽  
C. K. Zhang ◽  
H. M. Li ◽  
Z. Luo

Abstract. Aiming at the road extraction in high-resolution remote sensing images, the stroke width transformation algorithm is greatly affected by surrounding objects, and it is impossible to directly obtain high-precision road information. A new road extraction method combining stroke width transformation and mean drift is proposed. In order to reduce road holes and discontinuities, and preserve better edge information, the algorithm first performs denoising preprocessing by means of median filtering to the pre-processed image. Then, the mean shift algorithm is used for image segmentation. The adjacent parts of the image with similar texture and spectrum are treated as the same class, and then the fine areas less than the maximum stroke width are reduced. On the basis , the road information is extracted by the stroke width transformation algorithm, and the information also contains a small amount of interference information such as spots (non-road). In order to further improve road extraction accuracy and reduce speckle and non-road area interference, the basic operations and combinations in mathematical morphology are used to optimize it. The experimental results show that the proposed algorithm can accurately extract the roads on high-resolution remote sensing images, and the better the road features, the better the extraction effect. However, the applicability of the algorithm is greatly affected by the surrounding objects.


2020 ◽  
Vol 12 (18) ◽  
pp. 2985 ◽  
Author(s):  
Yeneng Lin ◽  
Dongyun Xu ◽  
Nan Wang ◽  
Zhou Shi ◽  
Qiuxiao Chen

Automatic road extraction from very-high-resolution remote sensing images has become a popular topic in a wide range of fields. Convolutional neural networks are often used for this purpose. However, many network models do not achieve satisfactory extraction results because of the elongated nature and varying sizes of roads in images. To improve the accuracy of road extraction, this paper proposes a deep learning model based on the structure of Deeplab v3. It incorporates squeeze-and-excitation (SE) module to apply weights to different feature channels, and performs multi-scale upsampling to preserve and fuse shallow and deep information. To solve the problems associated with unbalanced road samples in images, different loss functions and backbone network modules are tested in the model’s training process. Compared with cross entropy, dice loss can improve the performance of the model during training and prediction. The SE module is superior to ResNext and ResNet in improving the integrity of the extracted roads. Experimental results obtained using the Massachusetts Roads Dataset show that the proposed model (Nested SE-Deeplab) improves F1-Score by 2.4% and Intersection over Union by 2.0% compared with FC-DenseNet. The proposed model also achieves better segmentation accuracy in road extraction compared with other mainstream deep-learning models including Deeplab v3, SegNet, and UNet.


2007 ◽  
Author(s):  
Jie Yu ◽  
Huiling Qin ◽  
Qin Yan ◽  
Ming Tan ◽  
Guoning Zhang

2019 ◽  
Vol 11 (21) ◽  
pp. 2499 ◽  
Author(s):  
Jiang Xin ◽  
Xinchang Zhang ◽  
Zhiqiang Zhang ◽  
Wu Fang

Road network extraction is one of the significant assignments for disaster emergency response, intelligent transportation systems, and real-time updating road network. Road extraction base on high-resolution remote sensing images has become a hot topic. Presently, most of the researches are based on traditional machine learning algorithms, which are complex and computational because of impervious surfaces such as roads and buildings that are discernible in the images. Given the above problems, we propose a new method to extract the road network from remote sensing images using a DenseUNet model with few parameters and robust characteristics. DenseUNet consists of dense connection units and skips connections, which strengthens the fusion of different scales by connections at various network layers. The performance of the advanced method is validated on two datasets of high-resolution images by comparison with three classical semantic segmentation methods. The experimental results show that the method can be used for road extraction in complex scenes.


Sign in / Sign up

Export Citation Format

Share Document