scholarly journals A ROAD EXTRACTION METHOD BASED ON HIGH RESOLUTION REMOTE SENSING IMAGE

Author(s):  
X. Zhang ◽  
C. K. Zhang ◽  
H. M. Li ◽  
Z. Luo

Abstract. Aiming at the road extraction in high-resolution remote sensing images, the stroke width transformation algorithm is greatly affected by surrounding objects, and it is impossible to directly obtain high-precision road information. A new road extraction method combining stroke width transformation and mean drift is proposed. In order to reduce road holes and discontinuities, and preserve better edge information, the algorithm first performs denoising preprocessing by means of median filtering to the pre-processed image. Then, the mean shift algorithm is used for image segmentation. The adjacent parts of the image with similar texture and spectrum are treated as the same class, and then the fine areas less than the maximum stroke width are reduced. On the basis , the road information is extracted by the stroke width transformation algorithm, and the information also contains a small amount of interference information such as spots (non-road). In order to further improve road extraction accuracy and reduce speckle and non-road area interference, the basic operations and combinations in mathematical morphology are used to optimize it. The experimental results show that the proposed algorithm can accurately extract the roads on high-resolution remote sensing images, and the better the road features, the better the extraction effect. However, the applicability of the algorithm is greatly affected by the surrounding objects.

2021 ◽  
Vol 11 (11) ◽  
pp. 5050
Author(s):  
Jiahai Tan ◽  
Ming Gao ◽  
Kai Yang ◽  
Tao Duan

Road extraction from remote sensing images has attracted much attention in geospatial applications. However, the existing methods do not accurately identify the connectivity of the road. The identification of the road pixels may be interfered with by the abundant ground such as buildings, trees, and shadows. The objective of this paper is to enhance context and strip features of the road by designing UNet-like architecture. The overall method first enhances the context characteristics in the segmentation step and then maintains the stripe characteristics in a refinement step. The segmentation step exploits an attention mechanism to enhance the context information between the adjacent layers. To obtain the strip features of the road, the refinement step introduces the strip pooling in a refinement network to restore the long distance dependent information of the road. Extensive comparative experiments demonstrate that the proposed method outperforms other methods, achieving an overall accuracy of 98.25% on the DeepGlobe dataset, and 97.68% on the Massachusetts dataset.


2018 ◽  
Vol 46 (11) ◽  
pp. 1805-1814
Author(s):  
Tianjun Wu ◽  
Liegang Xia ◽  
Jiancheng Luo ◽  
Xiaocheng Zhou ◽  
Xiaodong Hu ◽  
...  

2020 ◽  
Vol 12 (18) ◽  
pp. 2985 ◽  
Author(s):  
Yeneng Lin ◽  
Dongyun Xu ◽  
Nan Wang ◽  
Zhou Shi ◽  
Qiuxiao Chen

Automatic road extraction from very-high-resolution remote sensing images has become a popular topic in a wide range of fields. Convolutional neural networks are often used for this purpose. However, many network models do not achieve satisfactory extraction results because of the elongated nature and varying sizes of roads in images. To improve the accuracy of road extraction, this paper proposes a deep learning model based on the structure of Deeplab v3. It incorporates squeeze-and-excitation (SE) module to apply weights to different feature channels, and performs multi-scale upsampling to preserve and fuse shallow and deep information. To solve the problems associated with unbalanced road samples in images, different loss functions and backbone network modules are tested in the model’s training process. Compared with cross entropy, dice loss can improve the performance of the model during training and prediction. The SE module is superior to ResNext and ResNet in improving the integrity of the extracted roads. Experimental results obtained using the Massachusetts Roads Dataset show that the proposed model (Nested SE-Deeplab) improves F1-Score by 2.4% and Intersection over Union by 2.0% compared with FC-DenseNet. The proposed model also achieves better segmentation accuracy in road extraction compared with other mainstream deep-learning models including Deeplab v3, SegNet, and UNet.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Aziguli Wulamu ◽  
Zuxian Shi ◽  
Dezheng Zhang ◽  
Zheyu He

Recent advances in convolutional neural networks (CNNs) have shown impressive results in semantic segmentation. Among the successful CNN-based methods, U-Net has achieved exciting performance. In this paper, we proposed a novel network architecture based on U-Net and atrous spatial pyramid pooling (ASPP) to deal with the road extraction task in the remote sensing field. On the one hand, U-Net structure can effectively extract valuable features; on the other hand, ASPP is able to utilize multiscale context information in remote sensing images. Compared to the baseline, this proposed model has improved the pixelwise mean Intersection over Union (mIoU) of 3 points. Experimental results show that the proposed network architecture can deal with different types of road surface extraction tasks under various terrains in Yinchuan city, solve the road connectivity problem to some extent, and has certain tolerance to shadows and occlusion.


2010 ◽  
Vol 108-111 ◽  
pp. 1344-1347
Author(s):  
Li Li Li ◽  
Yong Xin Liu

In general, the road extraction methods in remote sensing images mainly are edge detection, feature integration, and so on. A fast road recognition arithmetic is presented in this paper. First using adaptive binarization arithmetic, the path on remote sensing images is extracted. Then morphological method is used to process image. Finally, the extracted image superimposed with the original and get clear road. Simulation results shows that this algorithm is efficiency, the anti-noise ability is enhance, and more precision.


2007 ◽  
Author(s):  
Jie Yu ◽  
Huiling Qin ◽  
Qin Yan ◽  
Ming Tan ◽  
Guoning Zhang

Sign in / Sign up

Export Citation Format

Share Document