Vehicle Suspension System Based on PID Controller with JAYA Optimization Technique

Author(s):  
Akshaya Kumar Patra ◽  
Bidyadhar Rout ◽  
Dillip Kumar Subudhi ◽  
Saswata Pani ◽  
Narayan Nahak ◽  
...  
Author(s):  
Jimoh Pedro ◽  
Olurotimi Dahunsi

Neural network based feedback linearization control of a servo-hydraulic vehicle suspension systemThis paper presents the design of a neural network based feedback linearization (NNFBL) controller for a two degree-of-freedom (DOF), quarter-car, servo-hydraulic vehicle suspension system. The main objective of the direct adaptive NNFBL controller is to improve the system's ride comfort and handling quality. A feedforward, multi-layer perceptron (MLP) neural network (NN) model that is well suited for control by discrete input-output linearization (NNIOL) is developed using input-output data sets obtained from mathematical model simulation. The NN model is trained using the Levenberg-Marquardt optimization algorithm. The proposed controller is compared with a constant-gain PID controller (based on the Ziegler-Nichols tuning method) during suspension travel setpoint tracking in the presence of deterministic road disturbance. Simulation results demonstrate the superior performance of the proposed direct adaptive NNFBL controller over the generic PID controller in rejecting the deterministic road disturbance. This superior performance is achieved at a much lower control cost within the stipulated constraints.


Author(s):  
Maria Aline Gonçalves ◽  
Rodrigo Tumolin Rocha ◽  
Frederic Conrad Janzen ◽  
José Manoel Balthazar ◽  
Angelo Marcelo Tusset

Sign in / Sign up

Export Citation Format

Share Document