A case-based reasoning approach for fault detection state in bridges assessment

Author(s):  
Aurelian Ignat-Coman ◽  
Dorin Isoc ◽  
Adrian Joldis ◽  
Ion Gaziuc
2019 ◽  
Vol 25 (2) ◽  
pp. 213-235 ◽  
Author(s):  
Soumava Boral ◽  
Sanjay Kumar Chaturvedi ◽  
V.N.A. Naikan

Purpose Usually, the machinery in process plants is exposed to harsh and uncontrolled environmental conditions. Even after taking different types of preventive measures to detect and isolate the faults at the earliest possible opportunity becomes a complex decision-making process that often requires experts’ opinions and judicious decisions. The purpose of this paper is to propose a framework to detect, isolate and to suggest appropriate maintenance tasks for large-scale complex machinery (i.e. gearboxes of steel processing plant) in a simplified and structured manner by utilizing the prior fault histories available with the organization in conjunction with case-based reasoning (CBR) approach. It is also demonstrated that the proposed framework can easily be implemented by using today’s graphical user interface enabled tools such as Microsoft Visual Basic and similar. Design/methodology/approach CBR, an amalgamated domain of artificial intelligence and human cognitive process, has been applied to carry out the task of fault detection and isolation (FDI). Findings The equipment failure history and actions taken along with the pertinent health indicators are sufficient to detect and isolate the existing fault(s) and to suggest proper maintenance actions to minimize associated losses. The complex decision-making process of maintaining such equipment can exploit the principle of CBR and overcome the limitations of the techniques such as artificial neural networks and expert systems. The proposed CBR-based framework is able to provide inference with minimum or even with some missing information to take appropriate actions. This proposed framework would alleviate from the frequent requirement of expert’s interventions and in-depth knowledge of various analysis techniques expected to be known to process engineers. Originality/value The CBR approach has demonstrated its usefulness in many areas of practical applications. The authors perceive its application potentiality to FDI with suggested maintenance actions to alleviate an end-user from the frequent requirement of an expert for diagnosis or inference. The proposed framework can serve as a useful tool/aid to the process engineers to detect and isolate the fault of large-scale complex machinery with suggested actions in a simplified way.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7356
Author(s):  
Chenxi Ding ◽  
Aijun Yan

Fault detection in the waste incineration process depends on high-temperature image observation and the experience of field maintenance personnel, which is inefficient and can easily cause misjudgment of the fault. In this paper, a fault detection method is proposed by combining stochastic configuration networks (SCNs) and case-based reasoning (CBR). First, a learning pseudo metric method based on SCNs (SCN-LPM) is proposed by training SCN learning models using a training sample set and defined pseudo-metric criteria. Then, the SCN-LPM method is used for the case retrieval stage in CBR to construct the fault detection model based on SCN-CBR, and the structure, algorithmic implementation, and algorithmic steps are given. Finally, the performance is tested using historical data of the MSW incineration process, and the proposed method is compared with typical classification methods, such as a Back Propagation (BP) neural network, a support vector machine, and so on. The results show that this method can effectively improve the accuracy of fault detection and reduce the time complexity of the task and maintain a certain application value.


2019 ◽  
Vol 75 ◽  
pp. 227-232 ◽  
Author(s):  
Mohammad Reza Khosravani ◽  
Sara Nasiri ◽  
Kerstin Weinberg

2011 ◽  
Vol 64 (8) ◽  
pp. 1661-1667 ◽  
Author(s):  
Magda Ruiz ◽  
Gürkan Sin ◽  
Xavier Berjaga ◽  
Jesús Colprim ◽  
Sebastià Puig ◽  
...  

The main idea of this paper is to develop a methodology for process monitoring, fault detection and predictive diagnosis of a WasteWater Treatment Plant (WWTP). To achieve this goal, a combination of Multiway Principal Component Analysis (MPCA) and Case-Based Reasoning (CBR) is proposed. First, MPCA is used to reduce the multi-dimensional nature of online process data, which summarises most of the variance of the process data in a few (new) variables. Next, the outputs of MPCA (t-scores, Q-statistic) are provided as inputs (descriptors) to the CBR method, which is employed to identify problems and propose appropriate solutions (hence diagnosis) based on previously stored cases. The methodology is evaluated on a pilot-scale SBR performing nitrogen, phosphorus and COD removal and to help to diagnose abnormal situations in the process operation. Finally, it is believed that the methodology is a promising tool for automatic diagnosis and real-time warning, which can be used for daily management of plant operation.


Vestnik MEI ◽  
2020 ◽  
Vol 5 (5) ◽  
pp. 132-139
Author(s):  
Ivan E. Kurilenko ◽  
◽  
Igor E. Nikonov ◽  

A method for solving the problem of classifying short-text messages in the form of sentences of customers uttered in talking via the telephone line of organizations is considered. To solve this problem, a classifier was developed, which is based on using a combination of two methods: a description of the subject area in the form of a hierarchy of entities and plausible reasoning based on the case-based reasoning approach, which is actively used in artificial intelligence systems. In solving various problems of artificial intelligence-based analysis of data, these methods have shown a high degree of efficiency, scalability, and independence from data structure. As part of using the case-based reasoning approach in the classifier, it is proposed to modify the TF-IDF (Term Frequency - Inverse Document Frequency) measure of assessing the text content taking into account known information about the distribution of documents by topics. The proposed modification makes it possible to improve the classification quality in comparison with classical measures, since it takes into account the information about the distribution of words not only in a separate document or topic, but in the entire database of cases. Experimental results are presented that confirm the effectiveness of the proposed metric and the developed classifier as applied to classification of customer sentences and providing them with the necessary information depending on the classification result. The developed text classification service prototype is used as part of the voice interaction module with the user in the objective of robotizing the telephone call routing system and making a shift from interaction between the user and system by means of buttons to their interaction through voice.


Sign in / Sign up

Export Citation Format

Share Document