Development of non-contact carrier system using solar magnetic suspension (3ed report: Continuous 5-day and installation of sloping propulsion mechanism)

Author(s):  
Yuji Ishino ◽  
Takeshi Mizuno ◽  
Masaya Takasaki ◽  
Masayuki Hara ◽  
Daisuke Yamaguchi
2015 ◽  
Vol 2 (4) ◽  
pp. 15-00143-15-00143
Author(s):  
Yuji ISHINO ◽  
Masaya TAKASAKI ◽  
Takeshi MIZUNO

2001 ◽  
Vol 120 (5) ◽  
pp. A142-A142
Author(s):  
J GASKEY ◽  
E SEIDEL

2020 ◽  
Vol 64 (1-4) ◽  
pp. 977-983
Author(s):  
Koichi Oka ◽  
Kentaro Yamamoto ◽  
Akinori Harada

This paper proposes a new type of noncontact magnetic suspension system using two permanent magnets driven by rotary actuators. The paper aims to explain the proposed concept, configuration of the suspension system, and basic analyses for feasibility by FEM analyses. Two bar-shaped permanent magnets are installed as they are driven by rotary actuators independently. Attractive forces of two magnets act on the iron ball which is located under the magnets. Control of the angles of two magnets can suspend the iron ball stably without mechanical contact and changes the position of the ball. FEM analyses have been carried out for the arrangement of two permanent magnets and forces are simulated for noncontact suspension. Hence, successfully the required enough force against the gravity of the iron ball can be generated and controlled. Control of the horizontal force is also confirmed by the rotation of the permanent magnets.


2012 ◽  
Vol 1 (1) ◽  
pp. 11-21 ◽  
Author(s):  
J.K. Patel ◽  
K.N. Patel ◽  
H.K. Patel ◽  
B.A. Patel ◽  
P.A. Patel

Author(s):  
Chukwuebuka Umeyor ◽  
Uchechukwu Nnadozie ◽  
Anthony Attama

This study seeks to formulate and evaluate a solid lipid nanoparticle-based, solidified micellar carrier system for oral delivery of cefepime. Cefepime has enjoyed a lot of therapeutic usage in the treatment of susceptible bacterial infections; however, its use is limited due to its administration as an injection only with poor patient compliance. Since oral drug administration encourage high patient compliance with resultant effect in improved therapy, cefepime was formulated as solid lipid microparticles for oral delivery using the concept of solidified micellar carrier system. The carrier system was evaluated based on particle yield, particle size and morphology, encapsulation efficiency (EE %), and thermal analysis using differential scanning calorimeter (DSC). Preliminary microbiological studies were done using gram positive and negative bacteria. In vitro release study was performed using biorelevant media, while in vivo release study was performed in white albino rats. The yield of solid lipid microparticles (SLM) ranged from 84.2 – 98.0 %. The SLM were spherical with size ranges of 3.8 ± 1.2 to 42.0 ± 1.4 µm. The EE % calculated ranged from 83.6 – 94.8 %. Thermal analysis showed that SLM was less crystalline with high potential for drug entrapment. Microbial studies showed that cefepime retained its broad spectrum anti-bacterial activity. In vitro release showed sustained release of cefepime from SLM, and in vivo release study showed high concentration of cefepime released in the plasma of study rats. The study showed that smart engineering of solidified micellar carrier system could be used to improve oral delivery of cefepime.


Sign in / Sign up

Export Citation Format

Share Document