Sliding mode control design with the time varying parameters of the sliding surface of an offshore container crane

Author(s):  
Quang Hieu Ngo ◽  
Ngo Phong Nguyen
Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3811
Author(s):  
Katarzyna Adamiak ◽  
Andrzej Bartoszewicz

This study considers the problem of energetical efficiency in switching type sliding mode control of discrete-time systems. The aim of this work is to reduce the quasi-sliding mode band-width and, as follows, the necessary control input, through an application of a new type of time-varying sliding hyperplane in quasi-sliding mode control of sampled time systems. Although time-varying sliding hyperplanes are well known to provide insensitivity to matched external disturbances and uncertainties of the model in the whole range of motion for continuous-time systems, their application in the discrete-time case has never been studied in detail. Therefore, this paper proposes a sliding surface, which crosses the system’s representative point at the initial step and then shifts in the state space according to the pre-generated demand profile of the sliding variable. Next, a controller for a real perturbed plant is designed so that it drives the system’s representative point to its reference position on the sliding plane in each step. Therefore, the impact of external disturbances on the system’s trajectory is minimized, which leads to a reduction of the necessary control effort. Moreover, thanks to a new reaching law applied in the reference profile generator, the sliding surface shift in each step is strictly limited and a switching type of motion occurs. Finally, under the assumption of boundedness and smoothness of continuous-time disturbance, a compensation scheme is added. It is proved that this control strategy reduces the quasi-sliding mode band-width from O(T) to O(T3) order from the very beginning of the regulation process. Moreover, it is shown that the maximum state variable errors become of O(T3) order as well. These achievements directly reduce the energy consumption in the closed-loop system, which is nowadays one of the crucial factors in control engineering.


2013 ◽  
Vol 300-301 ◽  
pp. 1436-1443
Author(s):  
Xiao Hui Xu ◽  
Wen Chao Fu ◽  
Ji Ye Zhang ◽  
Wang Xi

In the real automated highway system, various factors to vehicles which are moving make the velocity of vehicles change suddenly. In this paper, assuming that the mass of vehicles, the drag coefficient and the resistance of the ground were uncertain, the controller for a class of time-varying delayed look-ahead vehicle longitudinal following system with impulsive effect was designed by using the idea of quasi-sliding mode control. An example is given at last to test the controller proposed in this paper.


2021 ◽  
Vol 40 (1) ◽  
pp. 983-999
Author(s):  
Huan Li ◽  
Pengyi Tang ◽  
Yuechao Ma

In this paper, a class of observer-based sliding mode controller is designed, and the finite-time H∞ control problem of uncertain T-S fuzzy systems with time-varying is studied. Firstly, an integral-type sliding surface function with time-delay is devised based on the state estimator, and sufficient criteria of finite-time bounded and finite-time H∞ bounded can be obtained for the T-S systems. Moreover, the proposed sliding mode control law is integrated to ensure the dynamics of controlled system into the sliding surface in a finite-time interval. Then, according to the linear matrix inequalities (LMIs), the desired gain matrices of fuzzy sliding mode controller and state estimator are derived. Finally, effectiveness gives some illustrative examples may be used to display the value of the current proposed method as well as a significant improvement.


Author(s):  
Chao Zhang ◽  
Liwei Zhang ◽  
Bo Peng ◽  
He Zhao

Background: The permanent magnet synchronous linear motor is a strongly coupled, nonlinear system. It has been applied in many fields, especially in the field of machining lathes and rail transportation. In order to ensure the permanent magnet synchronous linear motor has good dynamic performance and robustness, sliding mode control is gradually applied to the control system of permanent magnet synchronous linear motor. However, in the traditional sliding mode control, the convergence speed is slow, and the robust performance is poor when the sliding surface is not reached. Objective: The main purpose of this paper is to improve the dynamic performance and robustness of the permanent magnet synchronous linear motor during the process of approaching the sliding surface. Methods: Firstly, the type of nonlinear curve with "small error reduction, large error saturation" is introduced to design a nonlinear integral speed controller with global robustness. Secondly, the gain rate time-varying reaching law is introduced to reduce "chattering". Finally, using a symbolic tangent function instead of a sign function in designing a sliding mode observer reduces fluctuations in load observations. Results: Finally, the correctness and effectiveness of the control method are proved by simulation. Conclusion: The results of the simulation show that the nonlinear integral sliding mode controller based on gain time-varying reaching law is shown to have good global robustness and dynamic performance.


Sign in / Sign up

Export Citation Format

Share Document