scholarly journals Improved channel estimation for interference cancellation in random access methods for satellite communications

Author(s):  
Karine Zidane ◽  
Jerome Lacan ◽  
Marie-Laure Boucheret ◽  
Charly Poulliat
Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4194
Author(s):  
Fulvio Babich ◽  
Giulia Buttazzoni ◽  
Francesca Vatta ◽  
Massimiliano Comisso

This study proposes a set of novel random access protocols combining Packet Repetition (PR) schemes, such as Contention Resolution Diversity Slotted Aloha (CRDSA) and Irregular Repetition SA (IRSA), with Non Orthogonal Multiple Access (NOMA). Differently from previous NOMA/CRDSA and NOMA/IRSA proposals, this work analytically derives the energy levels considering two realistic elements: the residual interference due to imperfect Interference Cancellation (IC), and the presence of requirements on the power spent for the transmission. More precisely, the energy-limited scenario is based on the relationship between the average available energy and the selected code modulation pair, thus being of specific interest for the implementation of the Internet of Things (IoT) technology in forthcoming fifth-generation (5G) systems. Moreover, a theoretical model based on the density evolution method is developed and numerically validated by extensive simulations to evaluate the limiting throughput and to explore the actual performance of different NOMA/PR schemes in energy-constrained scenarios.


2013 ◽  
Vol 31 (11) ◽  
pp. 2387-2396 ◽  
Author(s):  
Chongbin Xu ◽  
Li Ping ◽  
Peng Wang ◽  
Sammy Chan ◽  
Xiaokang Lin

2020 ◽  
Author(s):  
Lu Shen ◽  
Yuriy Zakharov ◽  
Long Shi ◽  
Benjamin Henson

Abstract:<div><br><div><pre><p>In system identification scenarios, classical adaptive filters, such as the recursive least squares (RLS) algorithm, predict the system impulse response. If a tracking delay is acceptable, interpolating estimators capable of providing more accurate estimates of time-varying impulse responses can be used; channel estimation in communications is an example of such applications. The basis expansion model (BEM) approach is known to be efficient for non-adaptive (block) channel estimation in communications. In this paper, we combine the BEM approach with the sliding-window RLS (SRLS) algorithm and propose a new family of adaptive filters. Specifically, we use the Legendre polynomials, thus the name the SRLS-L adaptive filter. The identification performance of the SRLS-L algorithm is evaluated analytically and via simulation. The analysis shows significant improvement in the estimation accuracy compared to the SRLS algorithm and a good match between the theoretical and simulation results. The performance is further investigated in application to the self-interference cancellation in full-duplex underwater acoustic communications, where a high estimation accuracy is required. A field experiment conducted in a lake shows significant improvement in the cancellation performance compared to the classical SRLS algorithm.</p> </pre></div></div>


Sign in / Sign up

Export Citation Format

Share Document