Extremal optimization-based semi-supervised algorithm with conflict pairwise constraints for community detection

Author(s):  
Lei Li ◽  
Mei Du ◽  
Guanfeng Liu ◽  
Xuegang Hu ◽  
Gongqing Wu
PLoS ONE ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. e86891 ◽  
Author(s):  
Rodica Ioana Lung ◽  
Camelia Chira ◽  
Anca Andreica

2022 ◽  
Vol 2022 ◽  
pp. 1-18
Author(s):  
Zhejian Zhang

As one of the cores of data analysis in large social networks, community detection has become a hot research topic in recent years. However, user’s real social relationship may be at risk of privacy leakage and threatened by inference attacks because of the semitrusted server. As a result, community detection in social graphs under local differential privacy has gradually aroused the interest of industry and academia. On the one hand, the distortion of user’s real data caused by existing privacy-preserving mechanisms can have a serious impact on the mining process of densely connected local graph structure, resulting in low utility of the final community division. On the other hand, private community detection requires to use the results of multiple user-server interactions to adjust user’s partition, which inevitably leads to excessive allocation of privacy budget and large error of perturbed data. For these reasons, a new community detection method based on the local differential privacy model (named LDPCD) is proposed in this paper. Due to the introduction of truncated Laplace mechanism, the accuracy of user perturbation data is improved. In addition, the community divisive algorithm based on extremal optimization (EO) is also refined to reduce the number of interactions between users and the server. Thus, the total privacy overhead is reduced and strong privacy protection is guaranteed. Finally, LDPCD is applied in two commonly used real-world datasets, and its advantage is experimentally validated compared with two state-of-the-art methods.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Elham Alghamdi ◽  
Ellen Rushe ◽  
Brian Mac Namee ◽  
Derek Greene

AbstractIn many real applications of semi-supervised learning, the guidance provided by a human oracle might be “noisy” or inaccurate. Human annotators will often be imperfect, in the sense that they can make subjective decisions, they might only have partial knowledge of the task at hand, or they may simply complete a labeling task incorrectly due to the burden of annotation. Similarly, in the context of semi-supervised community finding in complex networks, information encoded as pairwise constraints may be unreliable or conflicting due to the human element in the annotation process. This study aims to address the challenge of handling noisy pairwise constraints in overlapping semi-supervised community detection, by framing the task as an outlier detection problem. We propose a general architecture which includes a process to “clean” or filter noisy constraints. Furthermore, we introduce multiple designs for the cleaning process which use different type of outlier detection models, including autoencoders. A comprehensive evaluation is conducted for each proposed methodology, which demonstrates the potential of the proposed architecture for reducing the impact of noisy supervision in the context of overlapping community detection.


2016 ◽  
Author(s):  
Ananth Kalyanaraman ◽  
Mahantesh Halappanavar ◽  
Daniel Chavarría-Miranda ◽  
Hao Lu ◽  
Karthi Duraisamy
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document