On the frequency control in high efficiency induction heating system with resonant inverter

Author(s):  
Mihaela Popescu ◽  
Alexandru Bitoleanu ◽  
Mircea Dobriceanu
Author(s):  
Muthu Periyasamy ◽  
Chandrahasan Umayal

This work deals with the Power Factor Corrected Single-Ended Primary Inductor Converter (PFC-SEPIC) based voltage fed closed loop full bridge series resonant induction heating system for household induction heating applications. The output voltage of the front end PFC-SEPIC converter fed series resonant inverter governs the controllers, which may be PI controller or Fuzzy Logic Controller (FLC). The analysis and comparison of time responses are presented in this paper. The PFC-SEPIC converter is used to improve the output power and the THD of source side current are compared for PI and FLC controllers. PFC-SEPIC converter maintains improved current and voltage at unity power factor through the input mains. The SEPIC converter based Voltage Fed Full Bridge Series Resonant Inverter (VFFBSRI) converts the voltage at a frequency of 10 kHz to a level suitable for household induction heating. A 1 kW SEPIC converter based VFFBSRI with RLC load is designed and simulated using MATLAB/ Simulink and hardware is fabricated.


2021 ◽  
Vol 2 (3) ◽  
pp. 235-245
Author(s):  
Rahul Raman ◽  
Subrata Kumar Dutta ◽  
Priya Sarmah ◽  
Mrigakshi Das ◽  
Amarjit Saikia ◽  
...  

This paper propounds the incorporation of a three-level inverter based Shunt Active Filter (SAF) in the Induction Heating (IH) system to eradicate the problems due to Electromagnetic Interference (EMI) & Radio Frequency Interference (RFI). The IH system generates a considerable amount of high-frequency harmonics because of myriad causes, the predominant one being the high-frequency switching in the resonant inverter. The former has an immanent propensity to flow towards the supply side and results in the enfeeblement of power quality. Moreover, in the present work, attention has been paid off to develop a proper control strategy of a three level inverter based SAF for EMI and RFI suppression. A new modeling approach of three-level inverter based SAF is proposed and the efficacy and viability of the proposed controllers for SAF in the IH system are validated via simulations in PSIM. A comparative analysis of THD in the input current waveform has been done to advocate the desideratum of SAF as an imperative part of the IH system. Results obtained by simulations show that the proposed approach is more effective than the reviewed approaches on compensating the harmonic currents and thus, the filtering action of SAF is able to achieve the THD of input current within the limit specified by the IEEE-519 standard. Doi: 10.28991/HIJ-2021-02-03-08 Full Text: PDF


Author(s):  
Michele Forzan ◽  
Fabrizio Dughiero ◽  
Sergio Lupi ◽  
Marcello Zerbetto

Purpose The purpose of this paper is to present the main experimental results obtained on the first prototype of an innovative induction heating system. MAGNHEAT was a LIFE project, funded by EU Commission, proposed to demonstrate the possibility of industrial application of a new technology for the induction heating of aluminum billets before extrusion. This technology uses permanent magnet heaters (PMHs), which constitute a high efficiency solution for the heating of high conductive metals. Design/methodology/approach The paper briefly describes the main steps of the project: the design of the PMH, the realization and installation of the demonstrator on an extrusion production line of Pandolfo Alluminio SpA and, mostly, the performance of the system. Findings The main results achieved during the preliminary tests on an industrial line have been summarized by evaluating some key performance indicators, as reported in the paper. Originality/value The new technology allows a significant reduction of the energy consumption and guarantees the same performance of a classical induction heater.


2016 ◽  
Vol 65 (4) ◽  
pp. 827-841
Author(s):  
Palash Pal ◽  
Debabrata Roy ◽  
Avik Datta ◽  
Pradip K. Sadhu ◽  
Atanu Banerjee

Abstract This paper presents a mathematical model of a power controller for a high-frequency induction heating system based on a modified half-bridge series resonant inverter. The output real power is precise over the heating coil, and this real power is processed as a feedback signal that contends a closed-loop topology with a proportional-integral-derivative controller. This technique enables both control of the closed-loop power and determination of the stability of the high-frequency inverter. Unlike the topologies of existing power controllers, the proposed topology enables direct control of the real power of the high-frequency inverter.


Author(s):  
Avijit Chakraborty ◽  
Pradip Kumar Sadhu ◽  
Kallol Bhaumik ◽  
Palash Pal ◽  
Nitai Pal

<p>This paper investigates the behavior of a high frequency parallel quasiresonant<br />inverter fitted domestic induction heater with different switching frequencies. The power semiconductor switch Insulated Gate Bipolar Junction Transistor (IGBT) is incorporated in this high frequency inverter that can operate under ZVS and ZCS conditions during the switching operations at certain switching frequency to reduce switching losses. The proposed induction heating system responds to three different switching frequencies with providing different results. An Insulated Gate Bipolar Junction Transistor (IGBT) provides better efficiency and faster switching operations. After the complete study of the proposed induction heating system at the selected switching frequencies, the results are compared and it is decided that most reliable, efficient and effective operations from the proposed induction heater can be obtained if the switching frequency is selected slightly above the resonant frequency of the tank circuit of the resonant inverter. The proposed scheme is analyzed using Power System<br />Simulator (PSIM) environment.</p>


1987 ◽  
Vol 107 (11) ◽  
pp. 1347-1354
Author(s):  
Ju Hong Kim ◽  
Hirotami Nakano ◽  
Tsuyoshi Matsuo ◽  
Kougi Iwata

Sign in / Sign up

Export Citation Format

Share Document