Design of New Current Full-Bridge Resonant Inverter for Induction Heating System

Author(s):  
Sang-Hun Lee ◽  
Sang-Kil Lim ◽  
Seung-Gun Song
Author(s):  
Muthu Periyasamy ◽  
Chandrahasan Umayal

This work deals with the Power Factor Corrected Single-Ended Primary Inductor Converter (PFC-SEPIC) based voltage fed closed loop full bridge series resonant induction heating system for household induction heating applications. The output voltage of the front end PFC-SEPIC converter fed series resonant inverter governs the controllers, which may be PI controller or Fuzzy Logic Controller (FLC). The analysis and comparison of time responses are presented in this paper. The PFC-SEPIC converter is used to improve the output power and the THD of source side current are compared for PI and FLC controllers. PFC-SEPIC converter maintains improved current and voltage at unity power factor through the input mains. The SEPIC converter based Voltage Fed Full Bridge Series Resonant Inverter (VFFBSRI) converts the voltage at a frequency of 10 kHz to a level suitable for household induction heating. A 1 kW SEPIC converter based VFFBSRI with RLC load is designed and simulated using MATLAB/ Simulink and hardware is fabricated.


2021 ◽  
Vol 2 (3) ◽  
pp. 235-245
Author(s):  
Rahul Raman ◽  
Subrata Kumar Dutta ◽  
Priya Sarmah ◽  
Mrigakshi Das ◽  
Amarjit Saikia ◽  
...  

This paper propounds the incorporation of a three-level inverter based Shunt Active Filter (SAF) in the Induction Heating (IH) system to eradicate the problems due to Electromagnetic Interference (EMI) & Radio Frequency Interference (RFI). The IH system generates a considerable amount of high-frequency harmonics because of myriad causes, the predominant one being the high-frequency switching in the resonant inverter. The former has an immanent propensity to flow towards the supply side and results in the enfeeblement of power quality. Moreover, in the present work, attention has been paid off to develop a proper control strategy of a three level inverter based SAF for EMI and RFI suppression. A new modeling approach of three-level inverter based SAF is proposed and the efficacy and viability of the proposed controllers for SAF in the IH system are validated via simulations in PSIM. A comparative analysis of THD in the input current waveform has been done to advocate the desideratum of SAF as an imperative part of the IH system. Results obtained by simulations show that the proposed approach is more effective than the reviewed approaches on compensating the harmonic currents and thus, the filtering action of SAF is able to achieve the THD of input current within the limit specified by the IEEE-519 standard. Doi: 10.28991/HIJ-2021-02-03-08 Full Text: PDF


2016 ◽  
Vol 65 (4) ◽  
pp. 827-841
Author(s):  
Palash Pal ◽  
Debabrata Roy ◽  
Avik Datta ◽  
Pradip K. Sadhu ◽  
Atanu Banerjee

Abstract This paper presents a mathematical model of a power controller for a high-frequency induction heating system based on a modified half-bridge series resonant inverter. The output real power is precise over the heating coil, and this real power is processed as a feedback signal that contends a closed-loop topology with a proportional-integral-derivative controller. This technique enables both control of the closed-loop power and determination of the stability of the high-frequency inverter. Unlike the topologies of existing power controllers, the proposed topology enables direct control of the real power of the high-frequency inverter.


Author(s):  
Avijit Chakraborty ◽  
Pradip Kumar Sadhu ◽  
Kallol Bhaumik ◽  
Palash Pal ◽  
Nitai Pal

<p>This paper investigates the behavior of a high frequency parallel quasiresonant<br />inverter fitted domestic induction heater with different switching frequencies. The power semiconductor switch Insulated Gate Bipolar Junction Transistor (IGBT) is incorporated in this high frequency inverter that can operate under ZVS and ZCS conditions during the switching operations at certain switching frequency to reduce switching losses. The proposed induction heating system responds to three different switching frequencies with providing different results. An Insulated Gate Bipolar Junction Transistor (IGBT) provides better efficiency and faster switching operations. After the complete study of the proposed induction heating system at the selected switching frequencies, the results are compared and it is decided that most reliable, efficient and effective operations from the proposed induction heater can be obtained if the switching frequency is selected slightly above the resonant frequency of the tank circuit of the resonant inverter. The proposed scheme is analyzed using Power System<br />Simulator (PSIM) environment.</p>


2019 ◽  
Vol 2 (1) ◽  
pp. 29-39 ◽  
Author(s):  
S. G. Konesev ◽  
P. A. Khlyupin

Introduction: the systems of thermal effects on thermo-dependent, viscous and highly viscous liquids under conditions of the Arctic and the Extreme North are considered. Low efficiency and danger of heating systems based on burned hydrocarbons, heated liquids and steam are shown. Electrothermal heating systems used to maintain thermo-dependent fluids in a fluid state are considered. The evaluation of the effectiveness of the application of the most common electrothermal system — heating cables (tapes). The most effective electrothermal system based on induction technologies has been determined. Materials and methods: considered methods of thermal exposure to maintain the fluid properties of thermo-dependent fluids at low extreme temperatures. Results: presents an induction heating system and options for its implementation in the Extreme North and the Arctic. Conclusions: induction heating system to minimize loss of product quality, improve the system performance under changing process conditions, eliminate fire product, to reduce the influence of the human factor.


Sign in / Sign up

Export Citation Format

Share Document