“Autonomous and Adaptive Control”: Collaborative swarm control algorism inspired by adaptive mechanism of living organisms

Author(s):  
Masatsugu Ogawa ◽  
Masafumi Emura ◽  
Masumi Ichien ◽  
Masafumi Yano
Author(s):  
Andres E. Perez ◽  
Hever Moncayo ◽  
Mario Perhinschi ◽  
Dia Al Azzawi ◽  
Adil Togayev

This paper presents a novel bio-inspired adaptive control technique that has been designed to maintain the performance of an aircraft under upset conditions. The proposed control approach is inspired by biological principles that govern the humoral response of the immune system of living organisms and is intended to reduce pilot effort while maintaining adequate aircraft operation outside bounds of nominal design. The immunity-based control parameters are optimized offline for multiple sets of failures using a genetic algorithm approach. The performance of the immunity-based augmentation is compared with a neural network (NN)-based augmentation. Different piloted tests were performed on a six degrees-of-freedom (6DOF) motion-based simulator for different types of maneuvers under several flight conditions. The results show that the artificial immune system (AIS) proposed scheme improves the aircraft handling qualities by reducing the tracking errors (TEs) and improving the pilot response required to maintain control of the aircraft under upset conditions.


1997 ◽  
Vol 161 ◽  
pp. 437-442
Author(s):  
Salvatore Di Bernardo ◽  
Romana Fato ◽  
Giorgio Lenaz

AbstractOne of the peculiar aspects of living systems is the production and conservation of energy. This aspect is provided by specialized organelles, such as the mitochondria and chloroplasts, in developed living organisms. In primordial systems lacking specialized enzymatic complexes the energy supply was probably bound to the generation and maintenance of an asymmetric distribution of charged molecules in compartmentalized systems. On the basis of experimental evidence, we suggest that lipophilic quinones were involved in the generation of this asymmetrical distribution of charges through vectorial redox reactions across lipid membranes.


Sign in / Sign up

Export Citation Format

Share Document