ParaPindel: a scalable coordinated parallel detection framework for human genome-wide structural variation

Author(s):  
Yaning Yang ◽  
Xiaoqi Wang ◽  
Ying Xu ◽  
Chao Yang ◽  
Bin Jiang ◽  
...  
PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0123081 ◽  
Author(s):  
Yu Wang ◽  
Wei Li ◽  
Yingying Xia ◽  
Chongzhi Wang ◽  
Y. Tom Tang ◽  
...  

2019 ◽  
Author(s):  
Susanne U. Franssen ◽  
Caroline Durrant ◽  
Olivia Stark ◽  
Bettina Moser ◽  
Tim Downing ◽  
...  

AbstractProtozoan parasites of the Leishmania donovani complex – L. donovani and L. infantum – cause the fatal disease visceral leishmaniasis. We present the first comprehensive genome-wide global study, with 151 cultured field isolates representing most of the geographical distribution. L. donovani isolates separated into five groups that largely coincide with geographical origin but vary greatly in diversity. In contrast, the majority of L. infantum samples fell into one globally-distributed group with little diversity. This picture is complicated by several hybrid lineages. Identified genetic groups vary in heterozygosity and levels of linkage, suggesting different recombination histories. We characterise chromosome-specific patterns of aneuploidy and identified extensive structural variation, including known and suspected drug resistance loci. This study reveals greater genetic diversity than suggested by geographically-focused studies, provides a resource of genomic variation for future work and sets the scene for a new understanding of the evolution and genetics of the Leishmania donovani complex.


2013 ◽  
Author(s):  
Benjamin P. Berman ◽  
Yaping Liu ◽  
Theresa K. Kelly

Background: Nucleosome organization and DNA methylation are two mechanisms that are important for proper control of mammalian transcription, as well as epigenetic dysregulation associated with cancer. Whole-genome DNA methylation sequencing studies have found that methylation levels in the human genome show periodicities of approximately 190 bp, suggesting a genome-wide relationship between the two marks. A recent report (Chodavarapu et al., 2010) attributed this to higher methylation levels of DNA within nucleosomes. Here, we analyzed a number of published datasets and found a more compelling alternative explanation, namely that methylation levels are highest in linker regions between nucleosomes. Results: Reanalyzing the data from (Chodavarapu et al., 2010), we found that nucleosome-associated methylation could be strongly confounded by known sequence-related biases of the next-generation sequencing technologies. By accounting for these biases and using an unrelated nucleosome profiling technology, NOMe-seq, we found that genome-wide methylation was actually highest within linker regions occurring between nucleosomes in multi-nucleosome arrays. This effect was consistent among several methylation datasets generated independently using two unrelated methylation assays. Linker-associated methylation was most prominent within long Partially Methylated Domains (PMDs) and the positioned nucleosomes that flank CTCF binding sites. CTCF adjacent nucleosomes retained the correct positioning in regions completely devoid of CpG dinucleotides, suggesting that DNA methylation is not required for proper nucleosomes positioning. Conclusions: The biological mechanisms responsible for DNA methylation patterns outside of gene promoters remain poorly understood. We identified a significant genome-wide relationship between nucleosome organization and DNA methylation, which can be used to more accurately analyze and understand the epigenetic changes that accompany cancer and other diseases.


Sign in / Sign up

Export Citation Format

Share Document