Modelling the Human Immune System Response to the ChAdOx1 nCoV-19 Vaccine

Author(s):  
Maicom Peters Xavier ◽  
Lara T. Pompei ◽  
Ana Carolina G. de O. Vieira ◽  
Matheus A. M. de Paula ◽  
Carla R. B. Bonin ◽  
...  
2021 ◽  
Vol 26 (A) ◽  
pp. e954
Author(s):  
Arianna Consiglio ◽  
Flavio Licciulli ◽  
Domenico Catalano ◽  
Giorgio Grillo ◽  
Domenica D'Elia

Author(s):  
William Jacob S. Dolla ◽  
Brian A. Fricke ◽  
Bryan R. Becker

A cardiovascular stent is a cylindrical wire mesh structure that is permanently introduced into an artery during angioplasty (balloon dilatation) to act as a scaffold, thus preventing elastic recoil and/or sudden collapse of the damaged artery. While cardiovascular stents virtually eliminate elastic recoil and/or collapse of the artery, recognition of the stent as a foreign material triggers a human immune system response causing re-closure, or restenosis, of the artery. A recent advancement to counteract restenosis is to employ drug-eluting stents to locally deliver immunosuppressant and antiproliferative drugs.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii124-ii124
Author(s):  
Jan Remsik ◽  
Xinran Tong ◽  
Ugur Sener ◽  
Danille Isakov ◽  
Yudan Chi ◽  
...  

Abstract For decades, the central nervous system was considered to be an immune privileged organ with limited access to systemic immunity. However, the leptomeninges, the cerebrospinal fluid (CSF)-filled anatomical structure that protects the brain and spinal cord, represent a relatively immune-rich environment. Despite the presence of immune cells, complications in the CSF, such as infectious meningitis and a neurological development of cancer known as leptomeningeal metastasis, are difficult to treat and are frequently fatal. We show that immune cells entering the CSF are held in an ‘idle’ state that limits their cytotoxic arsenal and antigen presentation machinery. To understand this underappreciated neuroanatomic niche, we used unique mouse models and rare patient samples to characterize its cellular composition and critical signaling events in health and disease at a single-cell resolution. Revealing the mediators of CSF immune response will allow us to re-evaluate current therapeutic protocols and employ rational combinations with immunotherapies, therefore turning the patient’s own immune system into an active weapon against pathogens and cancer.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A763-A763
Author(s):  
Remko Schotte ◽  
Julien Villaudy ◽  
Martijn Kedde ◽  
Wouter Pos ◽  
Daniel Go ◽  
...  

BackgroundAdaptive immunity to cancer cells forms a crucial part of cancer immunotherapy. Recently, the importance of tumor B-cell signatures were shown to correlate with melanoma survival. We investigated whether tumor-targeting antibodies could be isolated from a patient that cured (now 13 years tumor-free) metastatic melanoma following adoptive transfer of ex vivo expanded autologous T cells.MethodsPatient‘s peripheral blood B cells were isolated and tested for the presence of tumor-reactive B cells using AIMM’s immmortalisation technology. Antibody AT1412 was identified by virtue of its differential binding to melanoma cells as compared to healthy melanocytes. AT1412 binds the tetraspanin CD9, a broadly expressed protein involved in multiple cellular activities in cancer and induces ADCC and ADCP by effector cells.ResultsSpontaneous immune rejection of tumors was observed in human immune system (HIS) mouse models implanted with CD9 genetically-disrupted A375 melanoma (A375-CD9KO) tumor cells, while A375wt cells were not cleared. Most notably, no tumor rejection of A375-CD9KO tumors was observed in NSG mice, indicating that blockade of CD9 makes tumor cells susceptible to immune rejection.CD9 has been described to regulate integrin signaling, e.g. LFA-1, VLA-4, VCAM-1 and ICAM-1. AT1412 was shown to modulate CD9 function by enhancing adhesion and transmigration of T cells to endothelial (HUVEC) cells. AT1412 was most potently enhancing transendothelial T-cell migration, in contrast to a high affinity version of AT1412 or other high affinity anti-CD9 reference antibodies (e.g. ALB6). Enhanced immune cell infiltration is also observed in immunodeficient mice harbouring a human immune system (HIS). AT1412 strongly enhanced CD8 T-cell and macrophage infiltration resulting in tumor rejection (A375 melanoma). PD-1 checkpoint blockade is further sustaining this effect. In a second melanoma model carrying a PD-1 resistant and highly aggressive tumor (SK-MEL5) AT1412 together with nivolumab was inducing full tumor rejection, while either one of the antibodies alone did not.ConclusionsThe safety of AT1412 has been assessed in preclinical development and is well tolerated up to 10 mg/kg (highest dose tested) by non human primates. AT1412 demonstrated a half-life of 8.5 days, supporting 2–3 weekly administration in humans. Besides transient thrombocytopenia no other pathological deviations were observed. No effect on coagulation parameters, bruising or bleeding were observed macro- or microscopically. The thrombocytopenia is reversible, and its recovery accelerated in those animals developing anti-drug antibodies. First in Human clinical study is planned to start early 2021.Ethics ApprovalStudy protocols were approved by the Medical Ethical Committee of the Leiden University Medical Center (Leiden, Netherlands).ConsentBlood was obtained after written informed consent by the patient.


2000 ◽  
Vol 106 (3) ◽  
pp. 530-536 ◽  
Author(s):  
Zsolt Szépfalusi ◽  
Josefa Pichler ◽  
Stefan Elsässer ◽  
Katalin van Duren ◽  
Christof Ebner ◽  
...  

Virulence ◽  
2010 ◽  
Vol 1 (5) ◽  
pp. 440-464 ◽  
Author(s):  
Jochen Wiesner ◽  
Andreas Vilcinskas

Sign in / Sign up

Export Citation Format

Share Document