Formation Control of Unmanned Surface Vehicles Using Fixed-time Sliding Mode Disturbance Observer

Author(s):  
Meng Joo Er ◽  
Zhongkun Li ◽  
Bohua Wang
Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Hongbin Wang ◽  
Bo Su ◽  
Yueling Wang ◽  
Jing Gao

Aiming at the problem of fixed-time trajectory tracking control for high-order dynamic systems with external time-varying disturbance and input dead-zone, an adaptive fixed-time sliding mode control algorithm is proposed by employing a fixed-time sliding mode disturbance observer (FTSMDO) and high-order fixed-time sliding mode algorithm. Firstly, a FTSMDO is presented for the problem that estimating the compound disturbance is composed of input dead-zone and time-varying external disturbance in the higher-order dynamic system, which cannot be measured accurately. Furthermore, for the case that the total disturbance of the system has an unknown upper bound, the corresponding adaptive law is designed to estimate the unknown upper bound, and the fixed-time controller is designed based on FTSMDO algorithm to make all state variables converge in a fixed-time. Based on Lyapunov technique, the fixed-time convergence performance of the proposed algorithm is proved. The effectiveness of the presented fixed-time control algorithm is verified by simulating the depth tracking control of the underactuated underwater vehicle.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Liang Zhang ◽  
Liang Jing ◽  
Liheng Ye ◽  
Xing Gao

Purpose This paper aims to investigate the problem of attitude control for a horizontal takeoff and horizontal landing reusable launch vehicle. Design/methodology/approach In this paper, a predefined-time attitude tracking controller is presented for a horizontal takeoff and horizontal landing reusable launch vehicle (HTHLRLV). Firstly, the attitude tracking error dynamics model of the HTHLRLV is developed. Subsequently, a novel sliding mode surface is designed with predefined-time stability. Furthermore, by using the proposed sliding mode surface, a predefined-time controller is derived. To compensate the external disturbances or model uncertainties, a fixed-time disturbance observer is developed, and its convergence time can be defined as a prior control parameter. Finally, the stability of the proposed sliding mode surface and the controller can be proved by the Lyapunov theory. Findings In contrast to other fixed-time methods, this controller only requires three control parameters, and the convergence time can be predefined instead of being estimated. The simulation results also demonstrate the effectiveness of the proposed controller. Originality/value A novel predefined-time attitude tracking controller is developed based on the predefined-time sliding mode surface (SMS) and fixed-time disturbance observer (FxTDO). The convergence time of the system can be selected as a prior control parameter for SMS and FxTDO.


Sign in / Sign up

Export Citation Format

Share Document