Sliding mode control for singularly perturbed linear continuous time systems: Composite control approaches

Author(s):  
Thang Nguyen ◽  
Wu-Chung Su ◽  
Zoran Gajic

This chapter will study the decentralized SMC for large-scale fuzzy interconnected systems. The design result on the decentralized sliding mode control of the continuous-time systems is derived in terms of LMIs. We also extend the result to discrete-time systems. Two simulation examples are provided to validate the advantage of the proposed methods.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3811
Author(s):  
Katarzyna Adamiak ◽  
Andrzej Bartoszewicz

This study considers the problem of energetical efficiency in switching type sliding mode control of discrete-time systems. The aim of this work is to reduce the quasi-sliding mode band-width and, as follows, the necessary control input, through an application of a new type of time-varying sliding hyperplane in quasi-sliding mode control of sampled time systems. Although time-varying sliding hyperplanes are well known to provide insensitivity to matched external disturbances and uncertainties of the model in the whole range of motion for continuous-time systems, their application in the discrete-time case has never been studied in detail. Therefore, this paper proposes a sliding surface, which crosses the system’s representative point at the initial step and then shifts in the state space according to the pre-generated demand profile of the sliding variable. Next, a controller for a real perturbed plant is designed so that it drives the system’s representative point to its reference position on the sliding plane in each step. Therefore, the impact of external disturbances on the system’s trajectory is minimized, which leads to a reduction of the necessary control effort. Moreover, thanks to a new reaching law applied in the reference profile generator, the sliding surface shift in each step is strictly limited and a switching type of motion occurs. Finally, under the assumption of boundedness and smoothness of continuous-time disturbance, a compensation scheme is added. It is proved that this control strategy reduces the quasi-sliding mode band-width from O(T) to O(T3) order from the very beginning of the regulation process. Moreover, it is shown that the maximum state variable errors become of O(T3) order as well. These achievements directly reduce the energy consumption in the closed-loop system, which is nowadays one of the crucial factors in control engineering.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1882
Author(s):  
Piotr Leśniewski ◽  
Andrzej Bartoszewicz

In this paper, discrete time reaching law-based sliding mode control of continuous time systems is considered. In sliding mode control methods, usually the assumption of bounded absolute values of disturbances is used. However in many cases, the rate of change of the disturbance is also bounded. In the presented approach, this knowledge is used to improve the control precision and reduce the undesirable chattering. Another advantage of the proposed method is that the disturbance does not have to satisfy the matching conditions. In the paper two new reaching laws are analyzed, one of them ensures the switching quasi-sliding motion and the other the non-switching motion. For both of them, the robustness is assessed by calculating the quasi-sliding mode band width, as well as the greatest possible state error values. Specifically, the state errors are not considered only at the sampling instants, as is usual for discrete time systems, but the bounds on the continuous values “between” the sampling instants are also derived. Then, the proposed approaches are compared and analyzed with respect to energy expenditure of the control signal.


Sign in / Sign up

Export Citation Format

Share Document