composite control
Recently Published Documents


TOTAL DOCUMENTS

243
(FIVE YEARS 69)

H-INDEX

21
(FIVE YEARS 4)

2022 ◽  
Vol 6 (1) ◽  
pp. 47
Author(s):  
Weijia Zheng ◽  
Runquan Huang ◽  
Ying Luo ◽  
YangQuan Chen ◽  
Xiaohong Wang ◽  
...  

Considering the performance requirements in actual applications, a look-up table based fractional order composite control scheme for the permanent magnet synchronous motor speed servo system is proposed. Firstly, an extended state observer based compensation scheme was adopted to suppress the motor parametric uncertainties and convert the speed servo plant into a double-integrator model. Then, a fractional order proportional-derivative (PDμ) controller was adopted as the speed controller to provide the optimal step response performance for the servo system. A universal look-up table was established to estimate the derivative order of the PDμ controller, according to the optimal samples collected by an improved differential evolution algorithm. With the look-up table, the optimal PDμ controller can be tuned analytically. Simulation and experimental results show that the servo system using the composite control scheme can achieve optimal tracking performance and has robustness to the motor parametric uncertainties and disturbance torques.


2021 ◽  
Vol 2136 (1) ◽  
pp. 012015
Author(s):  
Shengqing Li ◽  
Xinluo Li ◽  
Qiang Wu ◽  
Xiafei Long

Abstract In order to further optimize the output current harmonic suppression effect of photovoltaic grid-connected inverters, a composite control strategy of LCL type photovoltaic grid-connected inverter output current is proposed. This strategy combines proportional complex integral (PCI) control and repetitive control (RC) in parallel, draws a composite control block diagram, introduces a transfer function, and designs PCI and RC control parameters. Prove that the compound control can reduce current harmonics, achieved the purpose of reducing the steady-state error of the fundamental frequency. And adopts a new PCI composite control strategy, which helps to save the cost of the control system. By building the MATLAB/Simulink simulation platform and establishing the PCI+RC composite control model of LCL photovoltaic grid-connected inverter, the comparison of the simulation results shows that compared with the PI+RC control strategy, the total harmonic distortion rate of the grid-connected current is reduced by 25.77. %, significantly improving the quality of grid-connected current.


2021 ◽  
Vol 3 (4) ◽  
pp. 821-843
Author(s):  
Miloud Rezkallah ◽  
Hussein Ibrahim ◽  
Félix Dubuisson ◽  
Ambrish Chandra ◽  
Sanjeev Singh ◽  
...  

In this paper, a composite control strategy for improved off-grid configuration based on photovoltaic (PV array), a wind turbine (WT), and a diesel engine (DE) generator to achieve high performance while supplying nonlinear loads is investigated. To operate the WT efficiently under variable speed conditions and to obtain accurate and fast convergence to the maximum global operating point without a speed sensor, an iterative interpolation method is integrated with the perturbation and observation (P&O) technique. To ensure the balance of power in the system and to achieve the maximum power from the PV array without using any maximum power point tracking (MPPT) method, and ensuring stable operation during the disturbance, a double-loop control strategy for a two-switches buck-boost converter is developed. Furthermore, to protect the synchronous generator of the diesel generator (DG) from the 5th and 7th order-harmonics created by the connected nonlinear loads and to solve the issue of the filter resonance, the interfacing three-phase inverter is controlled using an improved synchronous-reference frame algorithm (SRF) with virtual impedance active damping. The presented work demonstrates effective and efficient control along with improved performance and cost-effective option as compared to the similar works reported in the literature. The performance of the presented off-grid configuration and its developed composite control strategy are tested using MATLAB/Simulink and validated through small-scale hardware prototyping.


2021 ◽  
Author(s):  
Ziming Wang ◽  
Hongyi Lin ◽  
Xiao Guo ◽  
Zhenyu Li ◽  
Guozhu Chen

Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2242
Author(s):  
Pengyu Qiao ◽  
Jun Yang ◽  
Chen Dai ◽  
Xi Xiao

The nonlinearities of piezoelectric actuators and external disturbances of the piezoelectric nanopositioning stage impose great, undesirable influences on the positioning accuracy of nanopositioning stage systems. This paper considers nonlinearities and external disturbances as a lumped disturbance and designs a composite control strategy for the piezoelectric nanopositioning stage to realize ultra-high precision motion control. The proposed strategy contains a composite disturbance observer and a continuous terminal sliding mode controller. The composite disturbance observer can estimate both periodic and aperiodic disturbances so that the composite control strategy can deal with the disturbances with high accuracy. Meanwhile, the continuous terminal sliding mode control is employed to eliminate the chattering phenomenon and speed up the convergence rate. The simulation and experiment results show that the composite control strategy achieves accurate estimation of different forms of disturbances and excellent tracking performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xisong Chen ◽  
Jiawei Yang ◽  
Zhijie Zhong ◽  
Junyong Zhai

The grinding process of the ball mill is an essential operation in metallurgical concentration plants. Generally, the model of the process is established as a multivariable system characterized with strong coupling and time delay. In previous research, a two-input-two-output model was applied to describe the system, in which some key indicators of the process were ignored. To this end, a three-input-three-output system is proposed to improve the model accuracy. Moreover, some practical and effective control strategies have been studied. The common control methods, including model predictive control (MPC), disturbance observer (DO), and so on, show poor performance when strong external and internal disturbances exist. In this paper, a composite control strategy based on MPC-DO is put forward to realize the control of the three-input-three-output ball mill system. The disturbances of the system consist of external disturbances including fluctuation of ore hardness and internal disturbances including model mismatches and strong couplings. The proposed MPC-DO controller includes a feedback control component based on MPC and a feed-forward compensation component based on DO. The simulation results indicate that the composite control scheme based on MPC-DO has good performance of tracking and anti-interference in process control of the ball mill.


Sign in / Sign up

Export Citation Format

Share Document