On-line estimation and control strategies for a microalgae fermentation continuous process

Author(s):  
Emil Petre ◽  
Dorin Cendrescu
2005 ◽  
Vol 111 (2) ◽  
pp. 128-136 ◽  
Author(s):  
Michiko Kobayashi ◽  
Toshinari Hiroshima ◽  
Keisuke Nagahisa ◽  
Hiroshi Shimizu ◽  
Suteaki Shioya

2003 ◽  
Author(s):  
Victor M. Martinez ◽  
Karen Finn ◽  
Thomas F. Edgar

2014 ◽  
Vol 54 (3) ◽  
pp. 240-247 ◽  
Author(s):  
Wojnar Sławomir ◽  
Boris Rohal-Ilkiv ◽  
Peter Šimončic ◽  
Marek Honek ◽  
Csambál Jozef

The aim of this paper is to present a simple model of the intake manifold dynamics of a spark ignition (SI) engine and its possible application for estimation and control purposes. We focus on pressure dynamics, which may be regarded as the foundation for estimating future states and for designing model predictive control strategies suitable for maintaining the desired air fuel ratio (AFR). The flow rate measured at the inlet of the intake manifold and the in-cylinder flow estimation are considered as parts of the proposed model. In-cylinder flow estimation is crucial for engine control, where an accurate amount of aspired air forms the basis for computing the manipulated variables. The solutions presented here are based on the mean value engine model (MVEM) approach, using the speed-density method. The proposed in-cylinder flow estimation method is compared to measured values in an experimental setting, while one-step-ahead prediction is illustrated using simulation results.


2021 ◽  
Vol 8 (1) ◽  
pp. 51-72
Author(s):  
Esteban Domingo ◽  
Carlos García-Crespo ◽  
Celia Perales

Viral quasispecies are dynamic distributions of nonidentical but closely related mutant and recombinant viral genomes subjected to a continuous process of genetic variation, competition, and selection that may act as a unit of selection. The quasispecies concept owes its theoretical origins to a model for the origin of life as a collection of mutant RNA replicators. Independently, experimental evidence for the quasispecies concept was obtained from sampling of bacteriophage clones, which revealed that the viral populations consisted of many mutant genomes whose frequency varied with time of replication. Similar findings were made in animal and plant RNA viruses. Quasispecies became a theoretical framework to understand viral population dynamics and adaptability. The evidence came at a time when mutations were considered rare events in genetics, a perception that was to change dramatically in subsequent decades. Indeed, viral quasispecies was the conceptual forefront of a remarkable degree of biological diversity, now evident for cell populations and organisms, not only for viruses. Quasispecies dynamics unveiled complexities in the behavior of viral populations,with consequences for disease mechanisms and control strategies. This review addresses the origin of the quasispecies concept, its major implications on both viral evolution and antiviral strategies, and current and future prospects.


Sign in / Sign up

Export Citation Format

Share Document