Application of multivariate empirical mode decomposition and canonical correlation analysis for EEG motion artifact removal

Author(s):  
Siddhi Tavildar ◽  
Ashkan Ashrafi
2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Vandana Roy ◽  
Shailja Shukla ◽  
Piyush Kumar Shukla ◽  
Paresh Rawat

The motion generated at the capturing time of electro-encephalography (EEG) signal leads to the artifacts, which may reduce the quality of obtained information. Existing artifact removal methods use canonical correlation analysis (CCA) for removing artifacts along with ensemble empirical mode decomposition (EEMD) and wavelet transform (WT). A new approach is proposed to further analyse and improve the filtering performance and reduce the filter computation time under highly noisy environment. This new approach of CCA is based on Gaussian elimination method which is used for calculating the correlation coefficients using backslash operation and is designed for EEG signal motion artifact removal. Gaussian elimination is used for solving linear equation to calculate Eigen values which reduces the computation cost of the CCA method. This novel proposed method is tested against currently available artifact removal techniques using EEMD-CCA and wavelet transform. The performance is tested on synthetic and real EEG signal data. The proposed artifact removal technique is evaluated using efficiency matrices such as del signal to noise ratio (DSNR), lambda (λ), root mean square error (RMSE), elapsed time, and ROC parameters. The results indicate suitablity of the proposed algorithm for use as a supplement to algorithms currently in use.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Biao Yang ◽  
Jinmeng Cao ◽  
Tiantong Zhou ◽  
Li Dong ◽  
Ling Zou ◽  
...  

Background. Neural activity under cognitive reappraisal can be more accurately investigated using simultaneous EEG- (electroencephalography) fMRI (functional magnetic resonance imaging) than using EEG or fMRI only. Complementary spatiotemporal information can be found from simultaneous EEG-fMRI data to study brain function. Method. An effective EEG-fMRI fusion framework is proposed in this work. EEG-fMRI data is simultaneously sampled on fifteen visually stimulated healthy adult participants. Net-station toolbox and empirical mode decomposition are employed for EEG denoising. Sparse spectral clustering is used to construct fMRI masks that are used to constrain fMRI activated regions. A kernel-based canonical correlation analysis is utilized to fuse nonlinear EEG-fMRI data. Results. The experimental results show a distinct late positive potential (LPP, latency 200-700ms) from the correlated EEG components that are reconstructed from nonlinear EEG-fMRI data. Peak value of LPP under reappraisal state is smaller than that under negative state, however, larger than that under neutral state. For correlated fMRI components, obvious activation can be observed in cerebral regions, e.g., the amygdala, temporal lobe, cingulate gyrus, hippocampus, and frontal lobe. Meanwhile, in these regions, activated intensity under reappraisal state is obviously smaller than that under negative state and larger than that under neutral state. Conclusions. The proposed EEG-fMRI fusion approach provides an effective way to study the neural activities of cognitive reappraisal with high spatiotemporal resolution. It is also suitable for other neuroimaging technologies using simultaneous EEG-fMRI data.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xun Chen ◽  
Chen He ◽  
Hu Peng

Electroencephalogram (EEG) recordings are often contaminated with muscle artifacts. This disturbing muscular activity strongly affects the visual analysis of EEG and impairs the results of EEG signal processing such as brain connectivity analysis. If multichannel EEG recordings are available, then there exist a considerable range of methods which can remove or to some extent suppress the distorting effect of such artifacts. Yet to our knowledge, there is no existing means to remove muscle artifacts from single-channel EEG recordings. Moreover, considering the recently increasing need for biomedical signal processing in ambulatory situations, it is crucially important to develop single-channel techniques. In this work, we propose a simple, yet effective method to achieve the muscle artifact removal from single-channel EEG, by combining ensemble empirical mode decomposition (EEMD) with multiset canonical correlation analysis (MCCA). We demonstrate the performance of the proposed method through numerical simulations and application to real EEG recordings contaminated with muscle artifacts. The proposed method can successfully remove muscle artifacts without altering the recorded underlying EEG activity. It is a promising tool for real-world biomedical signal processing applications.


Sign in / Sign up

Export Citation Format

Share Document