Proxy caching based on segments for layered encoded video over the internet

Author(s):  
Baofeng Liu ◽  
Wenjun Zhang ◽  
Songyu Yu
Keyword(s):  
2004 ◽  
Vol 42 (8) ◽  
pp. 88-94 ◽  
Author(s):  
Jiangchuan Liu ◽  
Jianliang Xu

Author(s):  
Chetan Kumar ◽  
Sean Marston

Approximately 4 billion people have access to the Internet, additionally 23 billion devices are connected as of 2018. This has allowed for a substantial growth in data collection which has allowed for Big Data to flourish. The continued increase in user, devices, and Big Data usage has created a significant intensification in Internet traffic. This in turn has the potential to increase user delays when accessing data on the Internet. There are a number of ways to help reduce user latency, web caching is able to reduce web user delays in addition to reducing network traffic and the load on web servers. In this study we propose a proxy level web caching mechanism leveraging historical web patterns to help reduce user latency and accelerate the Internet. In addition we survey the state of the art of other caching approaches. Our investigation shows that using historical patterns as part of a proxy caching mechanisms in large scale networks can significantly shorten the latency for users in this era of Big Data


2003 ◽  
Vol 13 (3) ◽  
pp. 257-269 ◽  
Author(s):  
Fang Yu ◽  
Qian Zhang ◽  
Wenwu Zhu ◽  
Ya-Qin Zhang

Author(s):  
Manuela Pereira ◽  
Mário M. Freire

information while being downloaded by clients. With the explosive growth of the Web and the mature of digital video technology, media streaming has received a great deal of interest as a promising solution for multimedia delivery services. This approach allows that media objects can be accessed in a similar way to conventional text and images using a download-and-play mode. However, unlike static text-based content, proxy caching has difficulty in delivering streaming media content because media objects are usually very large and its transmission consumes a great amount of network resources, prolongs startup latency, and threatens the playback continuity. The size of a conventional Web object is typically on the order of 1–100 kbytes and, therefore, a decision regarding either caching or not an object in its totality is an easy task (Liu & Xu, 2004). However, the size of media objects is very large, reaching a size on the order of several hundreds of Mbytes or even Gbytes. Therefore, caching a whole media object at a Web proxy optimized for delivering conventional small-size Web objects is not feasible, since large streams would quickly exhaust the capacity of the proxy cache. Besides, the streaming of media objects requires a significant amount of resources such as disk space and network bandwidth, which need to be maintained during a long period of time. Moreover, the long playback duration of a streaming may allow several client-server interactions. Therefore, access rates might be different for different parts of a stream, which makes cache management potentially more complex, as pointed out by Liu and Xu (2004). On the other hand, a download-beforeplaying solution provides continuous playback, but it also introduces a large startup delay. An effective solution to reduce client-perceived latencies and network congestion is to cache data at proxies widely deployed across the Internet. This solution, besides inexpensive, also leads to an improvement of both availability of objects and packet losses since redundant network transmission decreases while transmission efficiency increases. However, proxies are generally optimized for delivering conventional small-size Web objects, which may not satisfy the requirements of streaming applications. Due to these particular features of media objects, novel caching strategies have been proposed. With the evolution of the Internet as the dominant architecture for applications, contents, and services, these are gradually migrating from the client-­server paradigm to the edge services paradigm and to the peer-to-peer (P2P) computing paradigm. Recently, P2P system has received a great amount of interest as a promising scalable and costeffective solution for next-generation multimedia content distribution. This kind of systems have advantages regarding systems based on the client-server paradigm, namely improved scalability and reliability, cheaper infrastructures due to direct communication among peers, and easiness of resource aggregation in order to provide, for instance, massive processing power (Ye, Makedon, & Ford, 2004). However, P2P systems also have some drawbacks, namely the considerably more complex searching and node organization and security issues (Aberer, Punceva, Hauswirth, & Schmidt., 2002). Therefore, this article limits the discussion to low-cost proxy caching strategies for media streaming over Internet.


Author(s):  
Nestor J. Zaluzec

The Information SuperHighway, Email, The Internet, FTP, BBS, Modems, : all buzz words which are becoming more and more routine in our daily life. Confusing terminology? Hopefully it won't be in a few minutes, all you need is to have a handle on a few basic concepts and terms and you will be on-line with the rest of the "telecommunication experts". These terms all refer to some type or aspect of tools associated with a range of computer-based communication software and hardware. They are in fact far less complex than the instruments we use on a day to day basis as microscopist's and microanalyst's. The key is for each of us to know what each is and how to make use of the wealth of information which they can make available to us for the asking. Basically all of these items relate to mechanisms and protocols by which we as scientists can easily exchange information rapidly and efficiently to colleagues in the office down the hall, or half-way around the world using computers and various communications media. The purpose of this tutorial/paper is to outline and demonstrate the basic ideas of some of the major information systems available to all of us today. For the sake of simplicity we will break this presentation down into two distinct (but as we shall see later connected) areas: telecommunications over conventional phone lines, and telecommunications by computer networks. Live tutorial/demonstrations of both procedures will be presented in the Computer Workshop/Software Exchange during the course of the meeting.


Sign in / Sign up

Export Citation Format

Share Document