On Matrix Rigidity and Locally Self-Correctable Codes

Author(s):  
Zeev Dvir
Keyword(s):  
2021 ◽  
Author(s):  
Tao Zhang ◽  
Shuai Guo ◽  
Han Zhou ◽  
Zhimin Wu ◽  
Junfeng Liu ◽  
...  

2011 ◽  
Vol 13 (12) ◽  
pp. 1457-1465 ◽  
Author(s):  
Masha Prager-Khoutorsky ◽  
Alexandra Lichtenstein ◽  
Ramaswamy Krishnan ◽  
Kavitha Rajendran ◽  
Avi Mayo ◽  
...  

2018 ◽  
Vol 243 (7) ◽  
pp. 601-612 ◽  
Author(s):  
Nathan Cho ◽  
Shadi E Razipour ◽  
Megan L McCain

Cardiac fibroblasts and their activated derivatives, myofibroblasts, play a critical role in wound healing after myocardial injury and often contribute to long-term pathological outcomes, such as excessive fibrosis. Thus, defining the microenvironmental factors that regulate the phenotype of cardiac fibroblasts and myofibroblasts could lead to new therapeutic strategies. Both chemical and biomechanical cues have previously been shown to induce myofibroblast differentiation in many organs and species. For example, transforming growth factor beta 1, a cytokine secreted by neutrophils, and rigid extracellular matrix environments have both been shown to promote differentiation. However, the relative contributions of transforming growth factor beta 1 and extracellular matrix rigidity, two hallmark cues in many pathological myocardial microenvironments, to the phenotype of human cardiac fibroblasts are unclear. We hypothesized that transforming growth factor beta 1 and rigid extracellular matrix environments would potentially have a synergistic effect on the differentiation of human cardiac fibroblasts to myofibroblasts. To test this, we seeded primary human adult cardiac fibroblasts onto coverslips coated with polydimethylsiloxane of various elastic moduli, introduced transforming growth factor beta 1, and longitudinally quantified cell phenotype by measuring expression of α-smooth muscle actin, the most robust indicator of myofibroblasts. Our data indicate that, although extracellular matrix rigidity influenced differentiation after one day of transforming growth factor beta 1 treatment, ultimately transforming growth factor beta 1 superseded extracellular matrix rigidity as the primary regulator of myofibroblast differentiation. We also measured expression of POSTN, FAP, and FSP1, proposed secondary indicators of fibroblast/myofibroblast phenotypes. Although these genes partially trended with α-smooth muscle actin expression, they were relatively inconsistent. Finally, we demonstrated that activated myofibroblasts incompletely revert to a fibroblast phenotype after they are re-plated onto new surfaces without transforming growth factor beta 1, suggesting differentiation is partially reversible. Our results provide new insights into how microenvironmental cues affect human cardiac fibroblast differentiation in the context of myocardial pathology, which is important for identifying effective therapeutic targets and dictating supporting cell phenotypes for engineered human cardiac disease models. Impact statement Heart disease is the leading cause of death worldwide. Many forms of heart disease are associated with fibrosis, which increases extracellular matrix (ECM) rigidity and compromises cardiac output. Fibrotic tissue is synthesized primarily by myofibroblasts differentiated from fibroblasts. Thus, defining the cues that regulate myofibroblast differentiation is important for understanding the mechanisms of fibrosis. However, previous studies have focused on non-human cardiac fibroblasts and have not tested combinations of chemical and mechanical cues. We tested the effects of TGF-β1, a cytokine secreted by immune cells after injury, and ECM rigidity on the differentiation of human cardiac fibroblasts to myofibroblasts. Our results indicate that differentiation is initially influenced by ECM rigidity, but is ultimately superseded by TGF-β1. This suggests that targeting TGF-β signaling pathways in cardiac fibroblasts may have therapeutic potential for attenuating fibrosis, even in rigid microenvironments. Additionally, our approach can be leveraged to engineer more precise multi-cellular human cardiac tissue models.


2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Néjma Bélaadi ◽  
Gilliane Chadeuf ◽  
Luan Nguyen ◽  
Marc Rio ◽  
Guy Louarn ◽  
...  

2018 ◽  
Vol 114 (5) ◽  
pp. 1216-1224 ◽  
Author(s):  
Chenling Dong ◽  
Xiaofeng Chen ◽  
Bin Chen

2020 ◽  
Vol 20 (10) ◽  
pp. 3644-3655 ◽  
Author(s):  
Tatjana Schneckenburger ◽  
Sören Thiele-Bruhn

Abstract Purpose Sorption of organic compounds to soil largely determines their mobility and bioavailability in ecosystems. It is well known that molecular properties of the organic sorbates affect the sorbed amounts and sorption kinetics. But also changes in the hydration status of soils alter the physicochemical and sorptive properties of soil organic matter (SOM), which is the main sorbent for organic compounds in soils. This study elucidates the effects of varying SOM prehydration status on sorption of PAHs and PAH derivatives in peat soil. Materials and methods For sorption experiments, topsoil samples of a peat soil with 51% SOM were adjusted to water contents of 15, 30, and 50% (w/w based on dry soil mass) and conditioned for different water contact times of up to 2 years at one constant water content. Sorption kinetics and isotherms of naphthalene, three naphthalene derivatives, phenanthrene, and pyrene to these samples were investigated in batch experiments. Effects of the sorbates’ properties and SOM hydration on sorption were analyzed. Results and discussion Sorption to the peat soil was nonlinear and varied among sorbates and differently prehydrated soil samples. Sorbate polarizability, molecular volume, and weight increased the sorbed amount. Sorption kinetics were two-phased with a fast and a slow sorbing fraction. Hydroxyl groups in sorbates acting as H-donor or acceptor led to an increase of the slow sorbing fraction. Increasing total water contents, amounts of non-freezable water in SOM, increasing pore sizes, and decreasing hydrophobicity of SOM decreased the total sorbed amount and the fast sorbing fraction while increasing the slow sorbing fraction. The latter effects increased with increasing polarity and dipole moment of the sorbate. The SOM matrix rigidity varied with prehydration status; higher SOM matrix rigidity led to non-ideal sorption processes, namely, higher sorption nonlinearity and slower sorption. Conclusions The study revealed the effects and interplay of SOM prehydration status and molecular properties of the sorbates on sorption of PAHs and PAH derivatives. As sorbed amounts may decrease and become non-ideal upon aging at the presence of water, estimations of the mobility of organic compounds in the environment need to consider SOM prehydration status in high organic soils.


Sign in / Sign up

Export Citation Format

Share Document