The design of active disturbance rejection control law of underwater high-speed vehicle longitudinal channel

Author(s):  
Yuntao Han ◽  
Zengkun Qi
Robotica ◽  
2019 ◽  
Vol 38 (1) ◽  
pp. 118-135 ◽  
Author(s):  
Raouf Fareh ◽  
Mohammad Al-Shabi ◽  
Maamar Bettayeb ◽  
Jawhar Ghommam

SummaryThis paper presents an advanced robust active disturbance rejection control (ADRC) for flexible link manipulator (FLM) to track desired trajectories in the joint space and minimize the link’s vibrations. It has been shown that the ADRC technique has a very good disturbance rejection capability. Both the internal dynamics and the external disturbances can be estimated and compensated in real time. The proposed robust ADRC control law is developed to solve the problems existing in the original version of the ADRC related to the disturbance estimation errors and the variation of the parameters. Indeed, these parameters cannot be included in the existing disturbances and then be estimated by the extended state observer. The proposed control law is based on the sliding mode technique, which considers the uncertainties in the control gains and disturbance estimation errors. Lyapunov theory is used to prove the closed-loop stability of the system. The proposed control strategy is simulated and tested experimentally on one FLM. The effect of the observer bandwidth on the system performance is simulated and studied to select the best values of the bandwidth frequency. The simulation and experimental results show that the proposed robust ADRC has better performance than the traditional ADRC.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Hailong Niu ◽  
Qinhe Gao ◽  
Shengjin Tang ◽  
Wenliang Guan

Linear active disturbance rejection control (LADRC) algorithm is proposed to realize accurate trajectory tracking for the lever-type electric erection system. By means of system identification and curve fitting, the approximate model is built, which is consisting of the servo drive system with velocity closed-loop and the lever-type erection mechanism. The proportional control law with velocity feedforward is designed to improve the trajectory tracking performance. The experimental results verify that, based on approximate model, LADRC has better tracking accuracy and stronger robustness to the disturbance caused by the change of intrinsic parameters compared with PI controller.


ROBOT ◽  
2011 ◽  
Vol 33 (4) ◽  
pp. 461-466 ◽  
Author(s):  
Hao LIU ◽  
Tao WANG ◽  
Wei FAN ◽  
Tong ZHAO ◽  
Junzheng WANG

Sign in / Sign up

Export Citation Format

Share Document