Tracking of High-speed Emergency Avoidance Paths for Vehicles Based on Non-linear Active Disturbance Rejection Control*

Author(s):  
Jian Wang ◽  
Jinbo Wang ◽  
Fengyan Yi ◽  
Peng Yu
Author(s):  
Sumit Aole ◽  
Irraivan Elamvazuthi ◽  
Laxman Waghmare ◽  
Balasaheb Patre ◽  
Fabrice Meriaudeau

Trajectory tracking in upper limb rehabilitation exercises is utilized for repeatability of joint movement to improve the patient’s recovery in the early stages of rehabilitation. In this article, non-linear active disturbance rejection control as a combination of non-linear extended-state observer and non-linear state error feedback is used for the sinusoidal trajectory tracking control of the two-link model of an upper limb rehabilitation exoskeleton. The two links represent movements like flexion/extension for both the shoulder joint and the elbow joint in the sagittal plane. The Euler–Lagrange method was employed to acquire a dynamic model of an upper limb rehabilitation exoskeleton. To examine the efficacy and robustness of the proposed method, four disturbances cases in simulation studies with 20% parameter variation were applied. It was found that the non-linear active disturbance rejection control is robust against disturbances and achieves better tracking as compared to proportional–integral–derivative and existing conventional active disturbance rejection control method.


Author(s):  
Panshuo Li ◽  
James Lam ◽  
Kie Chung Cheung

This paper investigates the vibration attenuation problem of a non-linear full-car suspension system and aims to stabilize the vehicle attitude to provide a good ride quality. First, with respect to heave motion, pitch motion and roll motion, the full-car suspension system is separated into three interconnected subsystems. For each subsystem, corresponding motion-based controllers are designed to attenuate the vibrations of the sprung mass. A non-linear tracking differentiator is used to track the reference signal and to obtain its derivative. An extended state observer is established to estimate the total disturbance, which includes all the uncertainties and the external disturbance. Based on the principle of active disturbance rejection control, proportional–derivative and fuzzy proportional–derivative controllers are designed to control the resulting linear system with total disturbance compensation. Finally, four actuator forces are computed online using the three motion-based controllers obtained. Simulations are carried out in different road conditions; the results illustrate the merits of the proposed control method.


2017 ◽  
Vol 40 (8) ◽  
pp. 2611-2621 ◽  
Author(s):  
Mingxing Cheng ◽  
Xiaohong Jiao

This paper presents a novel idea processing the complex non-linear dynamics of a magneto-rheological (MR) damper and the external road disturbance based on the linear extended state observer (LESO) technology, and further verifies its reasonability by application of linear active disturbance rejection control (LADRC) in the quarter-car non-linear semi-active suspension system. In order to optimize the body acceleration and dynamic tyre load to improve the ride comfort and road-handling ability, a modified active disturbance rejection control, the double linear active disturbance rejection control (DLADRC), is further proposed based on the idea of the hybrid skyhook–groundhook control strategy. LESO is used to estimate the total disturbance including the external road disturbance and the internal non-linear dynamic of the MR damper. For effectiveness validation of the proposed control scheme, comparison results with the existing linear quadratic regulation (LQR) control, hybrid skyhook–groundhook control and adaptive control strategies are presented for the same quarter-car semi-active suspension. It is shown from the simulation comparisons among these several control strategies that the semi-active suspension system with DLADRC has a better control performance on the ride comfort and road-handling ability corresponding to the body acceleration and dynamic tyre load.


Sign in / Sign up

Export Citation Format

Share Document