An efficient co-evolutionary particle swarm optimizer for solving multi-objective optimization problems

Author(s):  
Daqing Wu ◽  
Li Liu ◽  
XiangJian Gong ◽  
Li Deng
2017 ◽  
Vol 31 (19-21) ◽  
pp. 1740073 ◽  
Author(s):  
Song Huang ◽  
Yan Wang ◽  
Zhicheng Ji

Multi-objective optimization problems (MOPs) need to be solved in real world recently. In this paper, a multi-objective particle swarm optimization based on Pareto set and aggregation approach was proposed to deal with MOPs. Firstly, velocities and positions were updated similar to PSO. Then, global-best set was defined in particle swarm optimizer to preserve Pareto-based set obtained by the population. Specifically, a hybrid updating strategy based on Pareto set and aggregation approach was introduced to update the global-best set and local search was carried on global-best set. Thirdly, personal-best positions were updated in decomposition way, and global-best position was selected from global-best set. Finally, ZDT instances and DTLZ instances were selected to evaluate the performance of MULPSO and the results show validity of the proposed algorithm for MOPs.


2021 ◽  
Author(s):  
Ahlem Aboud ◽  
Nizar Rokbani ◽  
Seyedali Mirjalili ◽  
Abdulrahman M. Qahtani ◽  
Omar Almutiry ◽  
...  

<p>Multifactorial Optimization (MFO) and Evolutionary Transfer Optimization (ETO) are new optimization challenging paradigms for which the multi-Objective Particle Swarm Optimization system (MOPSO) may be interesting despite limitations. MOPSO has been widely used in static/dynamic multi-objective optimization problems, while its potentials for multi-task optimization are not completely unveiled. This paper proposes a new Distributed Multifactorial Particle Swarm Optimization algorithm (DMFPSO) for multi-task optimization. This new system has a distributed architecture on a set of sub-swarms that are dynamically constructed based on the number of optimization tasks affected by each particle skill factor. DMFPSO is designed to deal with the issues of handling convergence and diversity concepts separately. DMFPSO uses Beta function to provide two optimized profiles with a dynamic switching behaviour. The first profile, Beta-1, is used for the exploration which aims to explore the search space toward potential solutions, while the second Beta-2 function is used for convergence enhancement. This new system is tested on 36 benchmarks provided by the CEC’2021 Evolutionary Transfer Multi-Objective Optimization Competition. Comparatives with the state-of-the-art methods are done using the Inverted General Distance (IGD) and Mean Inverted General Distance (MIGD) metrics. Based on the MSS metric, this proposal has the best results on most tested problems.</p>


2020 ◽  
Author(s):  
Taher Hajilounezhad ◽  
Sadegh Safari ◽  
Mehdi Aliehyaei

Many studies have attempted to optimize integrated Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT), although different and somehow conflicting results are reported employing various algorithms. In this study, Multi-Objective Optimization (MOO) is employed to approach the optimal design of SOFC-GT considering all prevailing factors. The emphasis is placed on the evaluation of the Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) performance as two effective approaches for solving the multi-objective and non-linear optimization problems. Multi- objective optimization is carried out on two vital objectives; the electrical efficiency and the overall output power of the system. The considerable achievements are the set of optimal points that aim to identify the system optimal performance which provides a practical basis for the decision-makers to choose the appropriate target functions. For the studied conditions, the two algorithms nearly exhibit similar performance, while the PSO is faster and more efficient in terms of computational effort. The PSO appears to achieve its ultimate parameter values in fewer generations compared to the GA algorithm under the examined circumstances. It is found that the maximum power of 410 kW is accomplished employing the GA optimization method with an efficiency of 64%, while PSO method yields the maximum power of 419.19 kW at the efficiency of 58.9%. The results stress that PSO offers more satisfactory convergence and fidelity of the solution for the SOFC-GT MOO problems.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2616
Author(s):  
Lijun Song ◽  
Jing Shi ◽  
Anda Pan ◽  
Jie Yang ◽  
Jun Xie

Facing energy shortage and severe environmental pollution, manufacturing companies need to urgently energy consumption, make rational use of resources and improve economic benefits. This paper formulates a multi-objective optimization model for lathe turning operations which aims to simultaneously minimize energy consumption, machining cost and cutting time. A dynamic multi-swarm particle swarm optimizer (DMS-PSO) is proposed to solve the formulation. A case study is provided to illustrate the effectiveness of the proposed algorithm. The results show that the DMS-PSO approach can ensure good convergence and diversity of the solution set. Additionally, the optimal machining parameters are identified by fuzzy comprehensive evaluation (FCE) and compared with empirical parameters. It is discovered that the optimal parameters obtained from the proposed algorithm outperform the empirical parameters in all three objectives. The research findings shed new light on energy conservation of machining operations.


Sign in / Sign up

Export Citation Format

Share Document