Distributed control laws for multi-agent system formation tracking modeled by a wave PDE

Author(s):  
Zhang Jiaheng ◽  
Jie Qi
Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 941
Author(s):  
Tianhao Sun ◽  
Huiying Liu ◽  
Yongming Yao ◽  
Tianyu Li ◽  
Zhibo Cheng

In this paper, the time-varying formation tracking problem of the general linear multi-agent system is discussed. A distributed formation tracking protocol based on Riccati inequalities with adaptive coupling weights among the follower agents and the leader agent is designed for a leader-following multi-agent system under fixed and switching topologies. The formation configuration involved in this paper is expressed as a bounded piecewise continuously differentiable vector function. The follower agents will achieve the desired formation tracking trajectory of the leader. In traditional static protocols, the coupling weights depend on the communication topology and is a constant. However, in this paper, the coupling weights are updated by the state errors among the neighboring agents. Moreover, the stability analysis of the MAS under switching topology is presented, and proves that the followers also could achieve pre-specified time-varying formation, if the communication graph is jointly connected. Two numerical simulations indicate the capabilities of the algorithms.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Jiangping Hu ◽  
Yulong Zhou ◽  
Yunsong Lin

Event-driven control scheduling strategies for multiagent systems play a key role in future use of embedded microprocessors of limited resources that gather information and actuate the agent control updates. In this paper, a distributed event-driven consensus problem is considered for a multi-agent system with second-order dynamics. Firstly, two kinds of event-driven control laws are, respectively, designed for both leaderless and leader-follower systems. Then, the input-to-state stability of the closed-loop multi-agent system with the proposed event-driven consensus control is analyzed and the bound of the inter-event times is ensured. Finally, some numerical examples are presented to validate the proposed event-driven consensus control.


Sign in / Sign up

Export Citation Format

Share Document