Adaptive Optimal Control of Nonlinear Active Suspension Systems with Completely Unknown Dynamics

Author(s):  
Xin Chen ◽  
Yingbo Huang ◽  
Jing Na ◽  
Guanbin Gao ◽  
Jun Zhao
2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Zhi-Jun Fu ◽  
Bin Li ◽  
Xiao-Bin Ning ◽  
Wei-Dong Xie

In view of the performance requirements (e.g., ride comfort, road holding, and suspension space limitation) for vehicle suspension systems, this paper proposes an adaptive optimal control method for quarter-car active suspension system by using the approximate dynamic programming approach (ADP). Online optimal control law is obtained by using a single adaptive critic NN to approximate the solution of the Hamilton-Jacobi-Bellman (HJB) equation. Stability of the closed-loop system is proved by Lyapunov theory. Compared with the classic linear quadratic regulator (LQR) approach, the proposed ADP-based adaptive optimal control method demonstrates improved performance in the presence of parametric uncertainties (e.g., sprung mass) and unknown road displacement. Numerical simulation results of a sedan suspension system are presented to verify the effectiveness of the proposed control strategy.


Author(s):  
Rooholah Abdollahpour ◽  
Reza Sharifi Sedeh ◽  
Mohamad Taghi Ahmadian ◽  
Nasser Sadati

Advent of passenger cars has caused people to use them for more efficiency in their performance and wasting less time. Problems, however, still exist in them. For instance, since people travel with cars, their human bodies undergo in fatigue, restlessness, and sometimes health problems. Human body reaction under external vibration depends on the amplitude, frequency, and acceleration of the applied external excitation. These limitations which are usually announced by the bureau of standards imply the necessity of control of amplitude, vibration, frequency, and acceleration received by human body due to cars passing humps and bumps. In this paper, a quarter car model with active suspension system is considered and three control approaches namely optimal control, fuzzy control, and adaptive fuzzy optimal control (AFOC) are applied. Moreover, the performance of different controllers is compared. Application of three different methods indicate that adaptive fuzzy optimal control results in a higher performance in time, acceleration, amplitude, and consequently lower hazards to human body.


Sign in / Sign up

Export Citation Format

Share Document