Design of Car Active Suspension Systems to Obtain Desired Performance on Reducing Effect of Road Excitation on Human Health

Author(s):  
Rooholah Abdollahpour ◽  
Reza Sharifi Sedeh ◽  
Mohamad Taghi Ahmadian ◽  
Nasser Sadati

Advent of passenger cars has caused people to use them for more efficiency in their performance and wasting less time. Problems, however, still exist in them. For instance, since people travel with cars, their human bodies undergo in fatigue, restlessness, and sometimes health problems. Human body reaction under external vibration depends on the amplitude, frequency, and acceleration of the applied external excitation. These limitations which are usually announced by the bureau of standards imply the necessity of control of amplitude, vibration, frequency, and acceleration received by human body due to cars passing humps and bumps. In this paper, a quarter car model with active suspension system is considered and three control approaches namely optimal control, fuzzy control, and adaptive fuzzy optimal control (AFOC) are applied. Moreover, the performance of different controllers is compared. Application of three different methods indicate that adaptive fuzzy optimal control results in a higher performance in time, acceleration, amplitude, and consequently lower hazards to human body.

Author(s):  
Reza Sharifi Sedeh ◽  
Rooholah Abdollahpour ◽  
Mohamad Taghi Ahmadian ◽  
Nasser Sadati

Using passenger cars for daily traveling include advantages and disadvantages simultaneously; this daily traveling causes variety of road excitations in the form of vibration with different amplitude and acceleration to be imposed on body. Exceeding the standard limitations of these parameters results in fatigue, restlessness, and health problems. In this paper, a quarter-car model with semi-active suspension system is considered and three control approaches are applied to reduce these parameters in the limit of standard. Results show adaptive fuzzy optimal controller has better performance compared to others in controlling the critical health parameters, and can be easily used in future cars for minimizing unexpected hazards imposed on human body due to road excitations.


Author(s):  
E.M Allam ◽  
M.A.A Emam ◽  
Eid.S Mohamed

This paper presents the effect of the suspension working space, body displacement, body acceleration and wheel displacement for the non-controlled suspension system (passive system) and the controlled suspension system of a quarter car model (semi-active system), and comparison between them. The quarter car passive and semi-active suspension systems are modelled using Simulink. Proportional Integral Derivative controllers are incorporated in the design scheme of semi-active models. In the experimental work, the influence of switchable damper in a suspension system is compared with the passive and semi-active suspension systems.


Sign in / Sign up

Export Citation Format

Share Document