TreeNet: A Hierarchical Deep Learning Model to Facilitate Edge Intelligence for Resource-Constrained Devices

Author(s):  
Dong Lu ◽  
Yanlong Zhai ◽  
Jianqing Wu ◽  
Jun Shen
Author(s):  
Rezeda Khaydarova ◽  
Dmitriy Mouromtsev ◽  
Vladislav Fishchenko ◽  
Vladislav Shmatkov ◽  
Maxim Lapaev ◽  
...  

The paper is dedicated to distributed convolutional neural networks on a resource constrained devices cluster. The authors focus on requirements that meet the users' needs. Based on this, architecture of the system is proposed. Two use cases of CNN computations on a ROCK-CNN cluster are mentioned, and algorithms for organizing distributed convolutional neural networks are described. Experiments to validate proposed architecture and algorithms for distributed deep learning computations are conducted as well.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 835 ◽  
Author(s):  
Jiheon Kang ◽  
Doo-Seop Eom

We present a machine and deep learning method to offload trained deep learning model and transmit packets efficiently on resource-constrained internet of things (IoT) edge devices and networks. Recently, the types of IoT devices have become diverse and the volume of data has been increasing, such as images, voice, and time-series sensory signals generated by various devices. However, transmitting large amounts of data to a server or cloud becomes expensive owing to limited bandwidth, and leads to latency for time-sensitive operations. Therefore, we propose a novel offloading and transmission policy considering energy-efficiency, execution time, and the number of generated packets for resource-constrained IoT edge devices that run a deep learning model and a reinforcement learning method to find an optimal contention window size for effective channel access using a contention-based medium access control (MAC) protocol. A Reinforcement learning is used to improve the performance of the applied MAC protocol. Our proposed method determines the offload and transmission strategies that are better to directly send fragmented packets of raw data or to send the extracted feature vector or the final output of deep learning networks, considering the operation performance and power consumption of the resource-constrained microprocessor, as well as the power consumption of the radio transceiver and latency for transmitting the all the generated packets. In the performance evaluation, we measured the performance parameters of ARM Cortex-M4 and Cortex-M7 processors for the network simulation. The evaluation results show that our proposed adaptive channel access and learning-based offload and transmission methods outperform conventional role-based channel access schemes. They transmit packets of raw data and are effective for IoT edge devices and network protocols.


Informatica ◽  
2017 ◽  
Vol 28 (1) ◽  
pp. 193-214 ◽  
Author(s):  
Tung-Tso Tsai ◽  
Sen-Shan Huang ◽  
Yuh-Min Tseng

2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


Sign in / Sign up

Export Citation Format

Share Document