A Static Environment-Based Path Planning Method by Using Genetic Algorithm

Author(s):  
Zhigang Yao ◽  
Lianyang Ma
2021 ◽  
Author(s):  
Salvador Ortiz ◽  
Wen Yu

In this paper, sliding mode control is combined with the classical simultaneous localization and mapping (SLAM) method. This combination can overcome the problem of bounded uncertainties in SLAM. With the help of genetic algorithm, our novel path planning method shows many advantages compared with other popular methods.


2016 ◽  
Vol 11 (4) ◽  
pp. 269-273
Author(s):  
Li Si ◽  
Wang Yuan ◽  
Li Xinzhong ◽  
Liu Shenyang ◽  
Li Zhen

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zheng Fang ◽  
Xifeng Liang

Purpose The results of obstacle avoidance path planning for the manipulator using artificial potential field (APF) method contain a large number of path nodes, which reduce the efficiency of manipulators. This paper aims to propose a new intelligent obstacle avoidance path planning method for picking robot to improve the efficiency of manipulators. Design/methodology/approach To improve the efficiency of the robot, this paper proposes a new intelligent obstacle avoidance path planning method for picking robot. In this method, we present a snake-tongue algorithm based on slope-type potential field and combine the snake-tongue algorithm with genetic algorithm (GA) and reinforcement learning (RL) to reduce the path length and the number of path nodes in the path planning results. Findings Simulation experiments were conducted with tomato string picking manipulator. The results showed that the path length is reduced from 4.1 to 2.979 m, the number of nodes is reduced from 31 to 3 and the working time of the robot is reduced from 87.35 to 37.12 s, after APF method combined with GA and RL. Originality/value This paper proposes a new improved method of APF, and combines it with GA and RL. The experimental results show that the new intelligent obstacle avoidance path planning method proposed in this paper is beneficial to improve the efficiency of the robotic arm. Graphical abstract Figure 1 According to principles of bionics, we propose a new path search method, snake-tongue algorithm, based on a slope-type potential field. At the same time, we use genetic algorithm to strengthen the ability of the artificial potential field method for path searching, so that it can complete the path searching in a variety of complex obstacle distribution situations with shorter path searching results. Reinforcement learning is used to reduce the number of path nodes, which is good for improving the efficiency of robot work. The use of genetic algorithm and reinforcement learning lays the foundation for intelligent control.


2013 ◽  
Vol 446-447 ◽  
pp. 1292-1297 ◽  
Author(s):  
Da Qiao Zhang ◽  
Jiu Fen Zhao ◽  
Gang Lei ◽  
Shun Hong Wang ◽  
Xiao Long Zheng

During formation flying, Unmanned Aerial Vehicles (UAV) may need to arrive at target ahead of schedule by hurry path. Given fixed flight high mode, hurry planning method was proposed based on Adaptive Genetic Algorithm (AGA), which makes the new path shorter by locally adjusting the default path. By full considering the risk of UAV flight, the hurry path got by AGA meets the requirements of the risk cost and time amount in advance. Simulation results show that the path gotten by AGA can better meet the requirements of the time amount in advance, and evade the threat area effectively too.


Sign in / Sign up

Export Citation Format

Share Document