Hyperspectral image lossless compression using DSC and 2-D CALIC

Author(s):  
Yanjun Gong ◽  
Xueping Yan ◽  
Jiaji Wu
2018 ◽  
Vol 4 (12) ◽  
pp. 142 ◽  
Author(s):  
Hongda Shen ◽  
Zhuocheng Jiang ◽  
W. Pan

Hyperspectral imaging (HSI) technology has been used for various remote sensing applications due to its excellent capability of monitoring regions-of-interest over a period of time. However, the large data volume of four-dimensional multitemporal hyperspectral imagery demands massive data compression techniques. While conventional 3D hyperspectral data compression methods exploit only spatial and spectral correlations, we propose a simple yet effective predictive lossless compression algorithm that can achieve significant gains on compression efficiency, by also taking into account temporal correlations inherent in the multitemporal data. We present an information theoretic analysis to estimate potential compression performance gain with varying configurations of context vectors. Extensive simulation results demonstrate the effectiveness of the proposed algorithm. We also provide in-depth discussions on how to construct the context vectors in the prediction model for both multitemporal HSI and conventional 3D HSI data.


2019 ◽  
Vol 11 (21) ◽  
pp. 2461 ◽  
Author(s):  
Kevin Chow ◽  
Dion Tzamarias ◽  
Ian Blanes ◽  
Joan Serra-Sagristà

This paper proposes a lossless coder for real-time processing and compression of hyperspectral images. After applying either a predictor or a differential encoder to reduce the bit rate of an image by exploiting the close similarity in pixels between neighboring bands, it uses a compact data structure called k 2 -raster to further reduce the bit rate. The advantage of using such a data structure is its compactness, with a size that is comparable to that produced by some classical compression algorithms and yet still providing direct access to its content for query without any need for full decompression. Experiments show that using k 2 -raster alone already achieves much lower rates (up to 55% reduction), and with preprocessing, the rates are further reduced up to 64%. Finally, we provide experimental results that show that the predictor is able to produce higher rates reduction than differential encoding.


2019 ◽  
Vol 10 (10) ◽  
pp. 2619-2629 ◽  
Author(s):  
Jiqiang Luo ◽  
Jiaji Wu ◽  
Shihui Zhao ◽  
Lei Wang ◽  
Tingfa Xu

Sign in / Sign up

Export Citation Format

Share Document