Hyperspectral Image Lossy-to-Lossless Compression Using 3D SPEZBC Algorithm Based on KLT and Wavelet Transform

Author(s):  
Ying Hou ◽  
Ying Li
Author(s):  
N. Karthika Devi ◽  
G. Mahendran ◽  
S. Murugeswari ◽  
S. Praveen Samuel Washburn ◽  
D. Archana Devi ◽  
...  

2018 ◽  
Vol 4 (12) ◽  
pp. 142 ◽  
Author(s):  
Hongda Shen ◽  
Zhuocheng Jiang ◽  
W. Pan

Hyperspectral imaging (HSI) technology has been used for various remote sensing applications due to its excellent capability of monitoring regions-of-interest over a period of time. However, the large data volume of four-dimensional multitemporal hyperspectral imagery demands massive data compression techniques. While conventional 3D hyperspectral data compression methods exploit only spatial and spectral correlations, we propose a simple yet effective predictive lossless compression algorithm that can achieve significant gains on compression efficiency, by also taking into account temporal correlations inherent in the multitemporal data. We present an information theoretic analysis to estimate potential compression performance gain with varying configurations of context vectors. Extensive simulation results demonstrate the effectiveness of the proposed algorithm. We also provide in-depth discussions on how to construct the context vectors in the prediction model for both multitemporal HSI and conventional 3D HSI data.


2019 ◽  
Vol 11 (21) ◽  
pp. 2461 ◽  
Author(s):  
Kevin Chow ◽  
Dion Tzamarias ◽  
Ian Blanes ◽  
Joan Serra-Sagristà

This paper proposes a lossless coder for real-time processing and compression of hyperspectral images. After applying either a predictor or a differential encoder to reduce the bit rate of an image by exploiting the close similarity in pixels between neighboring bands, it uses a compact data structure called k 2 -raster to further reduce the bit rate. The advantage of using such a data structure is its compactness, with a size that is comparable to that produced by some classical compression algorithms and yet still providing direct access to its content for query without any need for full decompression. Experiments show that using k 2 -raster alone already achieves much lower rates (up to 55% reduction), and with preprocessing, the rates are further reduced up to 64%. Finally, we provide experimental results that show that the predictor is able to produce higher rates reduction than differential encoding.


2011 ◽  
Vol 356-360 ◽  
pp. 2897-2903
Author(s):  
Fen Fen Guo ◽  
Jian Rong Fan ◽  
Wen Qian Zang ◽  
Fei Liu ◽  
Huai Zhen Zhang

The vacancy of hyperspectral image (HSI) in China is made up by HJ-1A satellite, which makes more study and application possible. But comparing with other HSI, low spatial resolution turns into a big limiting obstacle for application. In order to improve the HSI quality and make full use of the existing RS data, this paper proposed a fusion approach basing on 3D wavelet transform (3D WT) to fusing HJ-1A HSI and Multispectral image (MSI) using their 3D structure. Contrasting with the principal component transform (PCA) and Gram-Schmidt fusion approach, which are mature at present, 3D WT fusion approach use all bands of MSI to its advantage and the fusion result perform better in both spatial and spectral quality.


Sign in / Sign up

Export Citation Format

Share Document