The necessary and sufficient conditions for the exact construction of a Lyapunov function and the asymptotic stability domain

Author(s):  
L.T. Grujic
1997 ◽  
Vol 20 (2) ◽  
pp. 347-366 ◽  
Author(s):  
L. T. Grujić

The results of the paper concern a broad family of time-varying nonlinear systems with differentiable motions. The solutions are established in a form of the necessary and sufficient conditions for: 1) uniform asymptotic stability of the zero state, 2) for an exact single construction of a system Lyapunov function and 3) for an accurate single determination of the (uniform) asymptotic stability domain. They permit arbitrary selection of a functionp(⋅)from a defined functional family to determine a Lyapunov functionv(⋅),[v(⋅)], by solvingv′(⋅)=−p(⋅){or equivalently,v′(⋅)=−p(⋅)[1−v(⋅)]}, respectively. Illstrative examples are worked out.


1994 ◽  
Vol 17 (3) ◽  
pp. 587-596 ◽  
Author(s):  
Ljubomir T. Grujic

The necessary and sufficient conditions for accurate construction of a Lyapunov function and the necessary and sufficient conditions for a set to be the asymptotic stability domain are algorithmically solved for a nonlinear dynamical system with continuous motions. The conditions are established by utilizing properties of o-uniquely bounded sets, which are explained in the paper. They allow arbitrary selection of an o-uniquely bounded set to generate a Lyapunov function.Simple examples illustrate the theory and its applications.


2004 ◽  
Vol 134 (6) ◽  
pp. 1177-1197 ◽  
Author(s):  
Martin Krupa ◽  
Ian Melbourne

Systems possessing symmetries often admit robust heteroclinic cycles that persist under perturbations that respect the symmetry. In previous work, we began a systematic investigation into the asymptotic stability of such cycles. In particular, we found a sufficient condition for asymptotic stability, and we gave algebraic criteria for deciding when this condition is also necessary. These criteria are satisfied for cycles in R3.Field and Swift, and Hofbauer, considered examples in R4 for which our sufficient condition for stability is not optimal. They obtained necessary and sufficient conditions for asymptotic stability using a transition-matrix technique.In this paper, we combine our previous methods with the transition-matrix technique and obtain necessary and sufficient conditions for asymptotic stability for a larger class of heteroclinic cycles. In particular, we obtain a complete theory for ‘simple’ heteroclinic cycles in R4 (thereby proving and extending results for homoclinic cycles that were stated without proof by Chossat, Krupa, Melbourne and Scheel). A partial classification of simple heteroclinic cycles in R4 is also given. Finally, our stability results generalize naturally to higher dimensions and many of the higher-dimensional examples in the literature are covered by this theory.


Author(s):  
Przemysław Przyborowski ◽  
Tadeusz Kaczorek

Positive 2D Discrete-Time Linear Lyapunov SystemsTwo models of positive 2D discrete-time linear Lyapunov systems are introduced. For both the models necessary and sufficient conditions for positivity, asymptotic stability, reachability and observability are established. The discussion is illustrated with numerical examples.


1995 ◽  
Vol 117 (B) ◽  
pp. 145-153 ◽  
Author(s):  
D. S. Bernstein ◽  
S. P. Bhat

Necessary and sufficient conditions for Lyapunov stability, semistability and asymptotic stability of matrix second-order systems are given in terms of the coefficient matrices. Necessary and sufficient conditions for Lyapunov stability and instability in the absence of viscous damping are also given. These are used to derive several known stability and instability criteria as well as a few new ones. In addition, examples are given to illustrate the stability conditions.


Sign in / Sign up

Export Citation Format

Share Document