Effective bandwidths and performance bounds in high-speed communication systems

Author(s):  
L. Dai
Author(s):  
Vardhana M. ◽  
Anil Kumar Bhat

Background: Security is one of the fundamental and essential factors, which has to be addressed in the field of communication. Communication refers to the exchange of useful information between two or more nodes. Sometimes it is required to exchange some of the confidential information such as a company’s logo, which needs to be hidden from the third person. The data that is being exchanged between these nodes has to be kept confidential and secured from unintended users. The three fundamental components of security are confidentiality, integrity and authentication. The data that is being exchanged has to be confidential, and only the authorized party should have access to the information that is being exchanged. One of the key methods for securing the data is encryption. Objective: The main objective of this paper was to address the problem of data hiding and security in communication systems. There is a need for having hardware resources for having high speed data security and protection. Methods: In this paper, we implemented image watermarking using LSB technique to hide a secret image, and employed encryption using Advanced Encryption Standard, to enhance the security of the image. An image is a two dimensional signal, with each pixel value representing the intensity level. The secure transmission of the image along the channel is a challenging task, because of the reason that, any individual can access it, if no security measures are taken. Conclusion: An efficient method of digital watermarking has been implemented with increased security and performance parameters are presented. Results: In this paper, hardware realization of image watermarking/encryption and dewatermarking/ decryption is implemented using Very Large Scale Integration. The design is verified by means of co-simulation using MATLAB and Xilinx. The paper also presents the performance parameters of the design, with respect to speed, area and power.


2005 ◽  
Vol 15 (03) ◽  
pp. 567-579
Author(s):  
Shenggao Li

Serial IOs are widely used to expand the system bandwidth in communication systems. This paper provides an overview of serial IO design trade-offs with regard to power, cost, and performance. Circuit techniques are discussed to achieve low jitter and high bandwidth.


1993 ◽  
Vol 41 (5) ◽  
pp. 745-751 ◽  
Author(s):  
Y. Imai ◽  
E. Sano ◽  
M. Nakamura ◽  
N. Ishihara ◽  
H. Kikuchi ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1922
Author(s):  
Yun-joong Park ◽  
Sang-mo Sung ◽  
Joon-young Kim ◽  
Jae-il Jung

In this paper, we present interference rejection combining scheme for interference suppression in wireless access in vehicular environments (WAVE) system. WAVE system performances depend on interference traffic since various signals and noises are present due to various vehicles on the road. The IRC scheme can minimize the interference presence from the received signal within the massive interference condition, resulting in the substantial gain of signal-to-interference and noise ratios (SINR) and performance. Based on the experiment of our proposed scheme, given the vehicle speed, SINR and different channel condition, our proposed scheme for interference suppression achieved significant improvements by 2 dB SINR performance gain in the low speed condition and above 0.5 dB performance gain at the high speed case. To extend our scheme for the comprehensive analysis, we also produced the vehicle speed and SINR performance map, which showed the performance pattern over vehicle speed and SINR of our scheme.


Modeling and performance analysis are crucial components in the understanding and design of high-speed optical communication systems. The purpose of this chapter is to discuss methods and techniques that can be used in modeling and performance analysis. It provides descriptions of various techniques that can be used to efficiently model and evaluate OTDM-WDM systems. Throughout the chapter, examples are used to demonstrate how the techniques can be applied to model and to evaluate the performance of high-speed optical communication systems.


2009 ◽  
Vol E92-C (7) ◽  
pp. 922-928 ◽  
Author(s):  
Kikuo MAKITA ◽  
Kazuhiro SHIBA ◽  
Takeshi NAKATA ◽  
Emiko MIZUKI ◽  
Sawaki WATANABE

Sign in / Sign up

Export Citation Format

Share Document