scholarly journals Reinforcement learning with reference tracking control in continuous state spaces

Author(s):  
Joseph Hall ◽  
Carl Edward Rasmussen ◽  
Jan Maciejowski
Author(s):  
Takumi Umemoto ◽  
Tohgoroh Matsui ◽  
Atsuko Mutoh ◽  
Koichi Moriyama ◽  
Nobuhiro Inuzuka

Author(s):  
Kazuteru Miyazaki ◽  
◽  
Shigenobu Kobayashi ◽  

Reinforcement learning involves learning to adapt to environments through the presentation of rewards – special input &#8211 serving as clues. To obtain quick rational policies, profit sharing (PS) [6], rational policy making algorithm (RPM) [7], penalty avoiding rational policy making algorithm (PARP) [8], and PS-r* [9] are used. They are called PS-based methods. When applying reinforcement learning to actual problems, treatment of continuous-valued input is sometimes required. A method [10] based on RPM is proposed as a PS-based method corresponding to the continuous-valued input, but only rewards exist and penalties cannot be suitably handled. We studied the treatment of continuous-valued input suitable for a PS-based method in which the environment includes both rewards and penalties. Specifically, we propose having PARP correspond to continuous-valued input while simultaneously targeting the attainment of rewards and avoiding penalties. We applied our proposal to the pole-cart balancing problem and confirmed its validity.


Author(s):  
Jie Zhong ◽  
Tao Wang ◽  
Lianglun Cheng

AbstractIn actual welding scenarios, an effective path planner is needed to find a collision-free path in the configuration space for the welding manipulator with obstacles around. However, as a state-of-the-art method, the sampling-based planner only satisfies the probability completeness and its computational complexity is sensitive with state dimension. In this paper, we propose a path planner for welding manipulators based on deep reinforcement learning for solving path planning problems in high-dimensional continuous state and action spaces. Compared with the sampling-based method, it is more robust and is less sensitive with state dimension. In detail, to improve the learning efficiency, we introduce the inverse kinematics module to provide prior knowledge while a gain module is also designed to avoid the local optimal policy, we integrate them into the training algorithm. To evaluate our proposed planning algorithm in multiple dimensions, we conducted multiple sets of path planning experiments for welding manipulators. The results show that our method not only improves the convergence performance but also is superior in terms of optimality and robustness of planning compared with most other planning algorithms.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Ogbonnaya Anicho ◽  
Philip B. Charlesworth ◽  
Gurvinder S. Baicher ◽  
Atulya K. Nagar

AbstractThis work analyses the performance of Reinforcement Learning (RL) versus Swarm Intelligence (SI) for coordinating multiple unmanned High Altitude Platform Stations (HAPS) for communications area coverage. It builds upon previous work which looked at various elements of both algorithms. The main aim of this paper is to address the continuous state-space challenge within this work by using partitioning to manage the high dimensionality problem. This enabled comparing the performance of the classical cases of both RL and SI establishing a baseline for future comparisons of improved versions. From previous work, SI was observed to perform better across various key performance indicators. However, after tuning parameters and empirically choosing suitable partitioning ratio for the RL state space, it was observed that the SI algorithm still maintained superior coordination capability by achieving higher mean overall user coverage (about 20% better than the RL algorithm), in addition to faster convergence rates. Though the RL technique showed better average peak user coverage, the unpredictable coverage dip was a key weakness, making SI a more suitable algorithm within the context of this work.


Sign in / Sign up

Export Citation Format

Share Document