Provable Reactive Navigation of Mobile Robots to a Moving Target in Unpredictable Dynamic Scenes*

Author(s):  
M.S. Nikolaev ◽  
A.S. Matveev
Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Hua Chen ◽  
Shen Xu ◽  
Lulu Chu ◽  
Fei Tong ◽  
Lei Chen

In this paper, finite-time tracking problem of nonholonomic mobile robots for a moving target is considered. First of all, polar coordinates are used to characterize the distance and azimuth between the moving target and the robot. Then, based on the distance and azimuth transported from the sensor installed on the robot, a finite-time tracking control law is designed for the nonholonomic mobile robot by the switching control method. Rigorous proof shows that the tracking error converges to zero in a finite time. Numerical simulation demonstrates the effectiveness of the proposed control method.


2017 ◽  
Vol 91 ◽  
pp. 11-24 ◽  
Author(s):  
Sungjoon Choi ◽  
Eunwoo Kim ◽  
Kyungjae Lee ◽  
Songhwai Oh

2021 ◽  
Vol 3 (1) ◽  
pp. 47-68
Author(s):  
Neset Unver Akmandor ◽  
Taskın Padir

This paper describes and analyzes a reactive navigation framework for mobile robots in unknown environments. The approach does not rely on a global map and only considers the local occupancy in its robot-centered 3D grid structure. The proposed algorithm enables fast navigation by heuristic evaluations of pre-sampled trajectories on-the-fly. At each cycle, these paths are evaluated by a weighted cost function, based on heuristic features such as closeness to the goal, previously selected trajectories, and nearby obstacles. This paper introduces a systematic method to calculate a feasible pose on the selected trajectory, before sending it to the controller for the motion execution. Defining the structures in the framework and providing the implementation details, the paper also explains how to adjust its offline and online parameters. To demonstrate the versatility and adaptability of the algorithm in unknown environments, physics-based simulations on various maps are presented. Benchmark tests show the superior performance of the proposed algorithm over its previous iteration and another state-of-art method. The open-source implementation of the algorithm and the benchmark data can be found at https://github.com/RIVeR-Lab/tentabot.


2021 ◽  
Vol 11 (19) ◽  
pp. 9170
Author(s):  
Peng Xu ◽  
Jin Tao ◽  
Minyi Xu ◽  
Guangming Xie

This paper mainly investigates formation control problems for a group of anonymous mobile robots with unknown nonlinear disturbances on a plane, in which all robots can asymptotically converge to any formation patterns without collision, and maintain any required relative distance with neighboring robots. To solve this problem, all robots are modeled as kinematic points and can only acquire information from other robots and their targets. Furthermore, a flexible distributed control law is designed to solve the formation problem while no collisions between any robots can be guaranteed during the whole process. The outstanding feature of the proposed control method is that it can force all mobile robots to form not only uniform circle formations but also non-uniform and non-circular formations with moving target centers. At last, both theoretical analysis and numerical simulations show the feasibility of the proposed control law.


2001 ◽  
Author(s):  
Jenelle Armstrong Piepmeier ◽  
Peter A. Morgan

Abstract An quasi-Newton method with Jacobian estimation is used to control a mobile robot utilizing visual feedback. The method is uncalibrated, requiring no camera calibration or known robot kinematics. Given a proper task configuration, the robot can be controlled such that it follows a moving target. This paper investigates the appropriate task configurations that result in a controllable system.


Author(s):  
Ankit A. Ravankar ◽  
Abhijeet Ravankar ◽  
Takanori Emaru ◽  
Yukinori Kobayashi

Sign in / Sign up

Export Citation Format

Share Document