Optimisation with Zeroth-Order Oracles in Formation

Author(s):  
Elad Michael ◽  
Daniel Zelazo ◽  
Tony A. Wood ◽  
Chris Manzie ◽  
Iman Shames
Keyword(s):  
2003 ◽  
Vol 780 ◽  
Author(s):  
P. Thomas ◽  
E. Nabighian ◽  
M.C. Bartelt ◽  
C.Y. Fong ◽  
X.D. Zhu

AbstractWe studied adsorption, growth and desorption of Xe on Nb(110) using an in-situ obliqueincidence reflectivity difference (OI-RD) technique and low energy electron diffraction (LEED) from 32 K to 100 K. The results show that Xe grows a (111)-oriented film after a transition layer is formed on Nb(110). The transition layer consists of three layers. The first two layers are disordered with Xe-Xe separation significantly larger than the bulk value. The third monolayer forms a close packed (111) structure on top of the tensile-strained double layer and serves as a template for subsequent homoepitaxy. The adsorption of the first and the second layers are zeroth order with sticking coefficient close to one. Growth of the Xe(111) film on the transition layer proceeds in a step flow mode from 54K to 40K. At 40K, an incomplete layer-by-layer growth is observed while below 35K the growth proceeds in a multilayer mode.


Author(s):  
Mengfei Zhang ◽  
Danqi Jin ◽  
Jie Chen ◽  
Jingen Ni
Keyword(s):  

2020 ◽  
Vol 15 (S359) ◽  
pp. 131-135
Author(s):  
S. B. Kraemer ◽  
T. J. Turner ◽  
D. M. Crenshaw ◽  
H. R. Schmitt ◽  
M. Revalski ◽  
...  

AbstractWe have analyzed Chandra/High Energy Transmission Grating spectra of the X-ray emission line gas in the Seyfert galaxy NGC 4151. The zeroth-order spectral images show extended H- and He-like O and Ne, up to a distance r ˜ 200 pc from the nucleus. Using the 1st-order spectra, we measure an average line velocity ˜230 km s–1, suggesting significant outflow of X-ray gas. We generated Cloudy photoionization models to fit the 1st-order spectra; the fit required three distinct emission-line components. To estimate the total mass of ionized gas (M) and the mass outflow rates, we applied the model parameters to fit the zeroth-order emission-line profiles of Ne IX and Ne X. We determined an M ≍ 5.4 × 105Mʘ. Assuming the same kinematic profile as that for the [O III] gas, derived from our analysis of Hubble Space Telescope/Space Telescope Imaging Spectrograph spectra, the peak X-ray mass outflow rate is approximately 1.8 Mʘ yr–1, at r ˜ 150 pc. The total mass and mass outflow rates are similar to those determined using [O III], implying that the X-ray gas is a major outflow component. However, unlike the optical outflows, the X-ray emitting mass outflow rate does not drop off at r > 100pc, which suggests that it may have a greater impact on the host galaxy.


Author(s):  
Amarjot Singh Bhullar ◽  
Gospel Ezekiel Stewart ◽  
Robert W. Zimmerman

Abstract Most analyses of fluid flow in porous media are conducted under the assumption that the permeability is constant. In some “stress-sensitive” rock formations, however, the variation of permeability with pore fluid pressure is sufficiently large that it needs to be accounted for in the analysis. Accounting for the variation of permeability with pore pressure renders the pressure diffusion equation nonlinear and not amenable to exact analytical solutions. In this paper, the regular perturbation approach is used to develop an approximate solution to the problem of flow to a linear constant-pressure boundary, in a formation whose permeability varies exponentially with pore pressure. The perturbation parameter αD is defined to be the natural logarithm of the ratio of the initial permeability to the permeability at the outflow boundary. The zeroth-order and first-order perturbation solutions are computed, from which the flux at the outflow boundary is found. An effective permeability is then determined such that, when inserted into the analytical solution for the mathematically linear problem, it yields a flux that is exact to at least first order in αD. When compared to numerical solutions of the problem, the result has 5% accuracy out to values of αD of about 2—a much larger range of accuracy than is usually achieved in similar problems. Finally, an explanation is given of why the change of variables proposed by Kikani and Pedrosa, which leads to highly accurate zeroth-order perturbation solutions in radial flow problems, does not yield an accurate result for one-dimensional flow. Article Highlights Approximate solution for flow to a constant-pressure boundary in a porous medium whose permeability varies exponentially with pressure. The predicted flowrate is accurate to within 5% for a wide range of permeability variations. If permeability at boundary is 30% less than initial permeability, flowrate will be 10% less than predicted by constant-permeability model.


2001 ◽  
Vol 56 (12) ◽  
pp. 869-872
Author(s):  
B. Baranowski ◽  
A. Lundén

Abstract The metastability of some phases of CsHSO4 and RbH2PO4 is due to the volume decrease at an endothermic phase transition which "locks in" the metastability in question. Water adsorption, which removes these metastabilities, probably exerts a "wedge-like" force which expands the lattice spacing in the surface layer, thus facilitating the start of the phase transition. The induction time and the zeroth order kinetics of the transition in RbH2PO4 are exponential functions of the water activity applied.


Sign in / Sign up

Export Citation Format

Share Document