Discussion of Transient Response Optimization Strategies of Turbocharged Diesel Engine under EGR Step Change Operation

Author(s):  
Sui Ling-ge ◽  
Liu Zhong-chang ◽  
Han Yong-qiang ◽  
Shen Zhao-jie ◽  
Zheng Guang-yong
2017 ◽  
Vol 23 (3) ◽  
pp. 297-309 ◽  
Author(s):  
Rakesh Mishra ◽  
Syed Mohammad Saad

Purpose Use of fossil fuels in automotive sector is one of the primary causes of greenhouse emissions. The automotive engines need to perform at their best efficiency point to limit these emissions. Most of the quality indicators in this regard are based on near steady state global operational characteristics for engines without considering local performance. In the present study, extensive numerical simulations have been carried out covering a wide range of steady state and transient operating conditions to quantify interaction of turbocharger with engines through turbo lag phenomena which may cause increased emissions during the load change conditions. Furthermore possible innovations have been explored to minimize turbo lag phenomena. The paper aims to discuss these issues. Design/methodology/approach In this paper quality indicators have been developed to quantify the performance of turbocharged diesel engine under the transient event of rapid change in fueling rate which has been rarely investigated. The rate of fueling is changed from 40 mm3/injection to 52 mm3/injection at 1,000 rpm engine speed which corresponds to normal operating condition. To improve quality of transient response, torque assistance method and reduction of inertia of compressor wheel have been used. Parametric study has been undertaken to analyze the quality indicators such as outlet pressure of the compressor and the compressor speed. The turbo lag is quantified to obtain the close to optimal transient response of turbocharged diesel engine. Findings It has been shown that, with torque assist the transient response of the internal combustion engine is significantly improved. On the other hand, marginal improvement in transient response is observed by the reduction in inertia of the compressor wheel. Research limitations/implications The findings indicate that turbo lag can be minimized by providing torque assistance by active and passive means. Practical implications The developed methods can be used in practice for efficient operation of vehicles. Social implications The work carried out in the paper provides a way to minimize harmful emissions. Originality/value The quality indicators developed provide a quantitative measure of turbo lag phenomena and address the above mentioned problems.


2014 ◽  
Vol 552 ◽  
pp. 227-231
Author(s):  
Zhen Biao Wei ◽  
Kun Peng Zheng ◽  
Jian Tao Feng

The accelerated performance of the vehicle is an important part of the vehicle performance. To a large extent, the accelerated performance depends mainly on transient response performance of diesel engine. Better the transient response performance of the diesel engine, the accelerated performance of the vehicle is better. On the basis of analyzing poor performance of transient response of turbocharged diesel engine, we propose technical measures to improve accelerated performance of turbocharger using vehicle energy reserves, and design the related hardware and software. Through the real vehicle tests can show that the accelerated device can improve the transient response performance of vehicle diesel engines.


Author(s):  
Ming Zheng ◽  
David K. Irick ◽  
Jeffrey Hodgson

For diesel engines (CIDI) the excessive use of exhaust gas recirculation (EGR) can reduce in-cylinder oxides of nitrogen (NOx) generation dramatically, but engine operation can also approach zones with high instabilities, usually accompanied with high cycle-to-cycle variations and deteriorated emissions of total hydrocarbon (THC), carbon monoxide (CO), and soot. A new approach has been proposed and tested to eliminate the influences of recycled combustibles on such instabilities, by applying an oxidation catalyst in the high-pressure EGR loop of a turbocharged diesel engine. The testing was directed to identifying the thresholds of stable operation at high rates of EGR without causing cycle-to-cycle variations associated with untreated recycled combustibles. The elimination of recycled combustibles using the oxidation catalyst showed significant influences on stabilizing the cyclic variations, so that the EGR applicable limits are effectively extended. The attainability of low NOx emissions with the catalytically oxidized EGR is also evaluated.


Sign in / Sign up

Export Citation Format

Share Document