Stabilizing Excessive EGR With an Oxidation Catalyst on a Modern Diesel Engine

Author(s):  
Ming Zheng ◽  
David K. Irick ◽  
Jeffrey Hodgson

For diesel engines (CIDI) the excessive use of exhaust gas recirculation (EGR) can reduce in-cylinder oxides of nitrogen (NOx) generation dramatically, but engine operation can also approach zones with high instabilities, usually accompanied with high cycle-to-cycle variations and deteriorated emissions of total hydrocarbon (THC), carbon monoxide (CO), and soot. A new approach has been proposed and tested to eliminate the influences of recycled combustibles on such instabilities, by applying an oxidation catalyst in the high-pressure EGR loop of a turbocharged diesel engine. The testing was directed to identifying the thresholds of stable operation at high rates of EGR without causing cycle-to-cycle variations associated with untreated recycled combustibles. The elimination of recycled combustibles using the oxidation catalyst showed significant influences on stabilizing the cyclic variations, so that the EGR applicable limits are effectively extended. The attainability of low NOx emissions with the catalytically oxidized EGR is also evaluated.

Author(s):  
Yunfan Zhang ◽  
Guoxiang Lu ◽  
Hongming Xu ◽  
Ziyang Li

The air path of a turbocharged diesel engine is a multi-input multi-output (MIMO) system with strong nonlinearity, coupling effect, delay and actuator constraints. This makes the design and tuning of the controller complex. In this paper, a tuneable model predictive control (TMPC) controller for a diesel engine’s air path with dual loop exhaust gas recirculation (DLEGR) is presented. The objective is to regulate the intake manifold pressure and exhaust gas recirculation (EGR) mass flow in each loop to meet the time-varying setpoints through coordinated control of the variable geometry turbocharger (VGT) and EGR valves. The TMPC controller adopts the design framework of an MPC controller. This controller is also able to provide a map-based switching scheme for the local controller and the controller’s weightings. A comparison between the TMPC controller and a conventional PID controller is conducted on a validated real-time engine model. The simulation results show that the TMPC controller achieves lower overshoot, faster response and a shorter settling time on the manipulated objects. These improvements are beneficial for obtaining lower fuel consumption. In order to test the capability of the TMPC controller, it is validated on a hardware in the loop (HIL) platform. The results show that the agreement between the simulation and the actual ECU’s response is good.


2018 ◽  
Vol 29 (3) ◽  
pp. 372-391 ◽  
Author(s):  
M Krishnamoorthi ◽  
R Malayalamurthi

The threat of fossil fuel depletion and augmented environmental pollution caused by diesel fleets can be curbed by adopting suitable fuel and engine modifications. In the present work, effects of engine speed (r/min), injection timing, injection pressure and compression ratio on performance and emission characteristics of a compression ignition engine were investigated. The ternary test fuel of 65% diesel + 25% bael oil + 10% diethyl ether has been used, where the tests have been conducted at different charge inlet temperature and exhaust gas recirculation. All the experiments were conducted at the trade-off engine load that is 75% engine load. When the diesel engine operating with 320 K charge inlet temperature, brake thermal efficiency has been improved to 28.6%. Meanwhile reduced emission levels of carbon monoxide (0.025%) and hydrocarbon (12.3 ppm) were observed during the engine operation with 320 K charge inlet temperature and compression ratio of 18:1. The oxides of nitrogen have been reduced to 226 ppm at 16:1 compression ratio with 30% exhaust gas recirculation mode.


Author(s):  
P. V. Walke ◽  
N. V. Deshpande ◽  
A. K. Mahalle

Testing of catalytic converter with exhaust gas recirculation system for diesel engine to reduce pollute gases is chosen for present work. The emphasis is given on hydrocarbon (HC), carbon monoxide (CO) and oxides of nitrogen. The catalytic converter was developed with variations of catalyst plates. Perforated plates of copper and combination of copper oxide and cerium oxide (CeO2 +CuO) were used as the catalyst. Copper spacer was used in between plates to vary the distance. Secondary air was injected into the converter to aid oxidization of HC and CO. Experimental study was carried out on computerized kirloskar single cylinder four stroke (10 B.H.P, 7.4 KW) diesel engine test rig with an eddy current dynamometer. The converter was tested with various combination with exhaust gas re-circulation (EGR) system. There are some improvements in the reduction and conversion efficiency of HC & CO. Exhaust gas re-circulation has proved to be effective in reducing NOx.


Author(s):  
P. V. Walke ◽  
N. V. Deshpande

Testing of catalytic converter with exhaust gas recirculation system for diesel engine to reduce pollute gases is chosen for present work. The emphasis is given on hydrocarbon (HC), carbon monoxide (CO) and oxides of nitrogen. The catalytic converter was developed with variations of catalyst plates. Perforated plates of copper and combination of copper oxide and cerium oxide (CeO2 +CuO2) were used as the catalyst. Copper spacer is used in between plates to vary the distance. Secondary air was injected into the converter to aid oxidization of HC and CO. Experimental study was carried out on computerized kirloskar single cylinder four stroke (10 B.H.P, 7.4 KW) diesel engine test rig with an eddy current dynamometer. The converter was tested with various combination of the exhaust gas re-circulation (EGR) system. There are some improvements in the reduction and conversion efficiency of HC & CO. Exhaust gas recirculation has proved to be effective in reducing NOx.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1651
Author(s):  
Deqing Mei ◽  
Qisong Yu ◽  
Zhengjun Zhang ◽  
Shan Yue ◽  
Lizhi Tu

The effects of two pilot injections on combustion and emissions were evaluated in a single−cylinder turbocharged diesel engine, which operated in premixed charge compression ignition (PCCI) modes with multiple injections and heavy exhaust gas recirculation under the low load by experiments and simulation. It was revealed that with the delay of the start of the first pilot injection (SOI−P1) or the advance of the start of second pilot injection (SOI−P2), respectively, the pressure, heat release rate (HRR), and temperature peak were all increased. Analysis of the combustion process indicates that, during the two pilot injection periods, the ignition timing was mainly determined by the SOI−P2 while the first released heat peak was influenced by SOI−P1. With the delay of SOI−P1 or the advance of SOI−P2, nitrogen oxide (NOx) generation increased significantly while soot generation varied a little. In addition, increasing Q1 and decreasing the second pilot injection quantity (Q2) can manipulate the NOx and soot at a low level. The advance in SOI−P2 of 5 °CA couple with increasing Q1 and reducing Q2 was proposed, which can mitigate the compromise between emissions and thermal efficiency under the low load in the present PCCI mode.


Author(s):  
Varun Kumar Singh ◽  
Naushad Ahmad Ansari ◽  
Abhishek Sharma ◽  
Samsher Gautam ◽  
Manish Kumar ◽  
...  

Biodiesel such as linseed oil can be derived from the feedstock of vegetables without disturbing supplies of food and the ecosystem. An experimental and comparative analysis was carried out to explore the effect of exhaust gas recirculation (EGR) and fuel injection pressure (FIP) on the emissions and efficiency of a CRDI diesel engine fuelled with linseed biodiesel/diesel blend. The engine characteristics were calculated using variable EGR (up to 14%) and adjustment of the injection pressure (up to 600 bar) under various load conditions. Multiple regression models were generated to evaluate responses such as Carbon monoxide (CO), Oxides of Nitrogen (NOx), hydrocarbon (HC), Brake power (BP), and Brake thermal efficiency (BTE) using response surface methodology (RSM). For all blends, a combination of FIP and EGR was employed and their impact was evaluated by plotting response surface contour. In RSM, the desirability approach is used to maximize the performance and minimize the emissions parameters of the engine. Linseed/diesel blend ratio 18.3%, FIP 576.76 bar, EGR 7.07%, and load 5.76 kg were estimated to be optimum for the tested engine. From this methodology, it was found that the optimal value of BTE, BP, HC, NOx, and CO is 19.55%, 1.758 kW, 16.7534 ppm, 505.56 ppm, and 0.0676% respectively.


2017 ◽  
Vol 19 (5) ◽  
pp. 542-552 ◽  
Author(s):  
Gurneesh Jatana ◽  
Lyle Kocher ◽  
Suk-Min Moon ◽  
Sriram Popuri ◽  
Kevin Augustin ◽  
...  

The combustion-residual backflow into the intake ports of a commercial diesel engine (Cummins ISX series) was spatiotemporally mapped using a multiplexed multi-species absorption spectroscopy sensor system; the resulting cycle- and cylinder-resolved measurements are applicable for assessing cylinder charge uniformity, control strategies, and computational fluid dynamics tools. On-engine measurements were made using four compact (3/8 in Outside Diameter) stainless steel probes which enabled simultaneous multi-point measurements, required minimal engine hardware modification, and featured a novel tip design for measurement of gas flows parallel to the probe axis. Three sensor probes were used to perform simultaneous backflow measurements in intake runners corresponding to three of the six engine cylinders, and a fourth probe was installed in the intake manifold plenum for tracking dynamics introduced by an external exhaust gas recirculation mixer. Near-crank-angle resolved measurements (5 kHz, that is, 1.2 crank angle resolution at 1000 RPM) were performed during steady-state engine operation at various levels of external exhaust gas recirculation to measure the gas properties and penetration distance of the backflow into the intake runners on a cylinder- and cycle-basis. Validation of computational fluid dynamics model results is also presented to demonstrate the utility of such measurements in advancing engine research.


Sign in / Sign up

Export Citation Format

Share Document