Index fund optimization using a genetic algorithm and a heuristic local search algorithm on scatter diagrams

Author(s):  
Y. Orito ◽  
H. Yamamoto
Author(s):  
Lan-Fen Liu ◽  
Xin-Feng Yang

AbstractThe diversity of products and fierce competition make the stability and production cost of manufacturing industry more important. So, the purpose of this paper is to deal with the multi-product aggregate production planning (APP) problem considering stability in the workforce and total production costs, and propose an efficient algorithm. Taking into account the relationship of raw materials, inventory cost and product demand, a multi-objective programming model for multi-product APP problem is established to minimize total production costs and instability in the work force. To improve the efficiency of the algorithm, the feasible region of the planned production and the number of workers in each period are determined and a local search algorithm is used to improve the search ability. Based on the analysis of the feasible range, a genetic algorithm is designed to solve the model combined with the local search algorithm. For analyzing the effect of this algorithm, the information entropy strategy, NSGA-II strategy and multi-population strategy are compared and analyzed with examples, and the simulation results show that the model is feasible, and the NSGA-II algorithm based on the local search has a better performance in the multi-objective APP problem.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Jun Wang ◽  
Pengcheng Luo ◽  
Xinwu Hu ◽  
Xiaonan Zhang

We propose a hybrid discrete grey wolf optimizer (HDGWO) in this paper to solve the weapon target assignment (WTA) problem, a kind of nonlinear integer programming problems. To make the original grey wolf optimizer (GWO), which was only developed for problems with a continuous solution space, available in the context, we first modify it by adopting a decimal integer encoding method to represent solutions (wolves) and presenting a modular position update method to update solutions in the discrete solution space. By this means, we acquire a discrete grey wolf optimizer (DGWO) and then through combining it with a local search algorithm (LSA), we obtain the HDGWO. Moreover, we also introduce specific domain knowledge into both the encoding method and the local search algorithm to compress the feasible solution space. Finally, we examine the feasibility of the HDGWO and the scalability of the HDGWO, respectively, by adopting it to solve a benchmark case and ten large-scale WTA problems. All of the running results are compared with those of a discrete particle swarm optimization (DPSO), a genetic algorithm with greedy eugenics (GAWGE), and an adaptive immune genetic algorithm (AIGA). The detailed analysis proves the feasibility of the HDGWO in solving the benchmark case and demonstrates its scalability in solving large-scale WTA problems.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Carolina Lagos ◽  
Guillermo Guerrero ◽  
Enrique Cabrera ◽  
Stefanie Niklander ◽  
Franklin Johnson ◽  
...  

A novel matheuristic approach is presented and tested on a well-known optimisation problem, namely, capacitated facility location problem (CFLP). The algorithm combines local search and mathematical programming. While the local search algorithm is used to select a subset of promising facilities, mathematical programming strategies are used to solve the subproblem to optimality. Proposed local search is influenced by instance-specific information such as installation cost and the distance between customers and facilities. The algorithm is tested on large instances of the CFLP, where neither local search nor mathematical programming is able to find good quality solutions within acceptable computational times. Our approach is shown to be a very competitive alternative to solve large-scale instances for the CFLP.


2018 ◽  
Vol 69 (6) ◽  
pp. 849-863 ◽  
Author(s):  
Ruizhi Li ◽  
Shuli Hu ◽  
Peng Zhao ◽  
Yupeng Zhou ◽  
Minghao Yin

Sign in / Sign up

Export Citation Format

Share Document