Sliding mode controller for air-breathing hypersonic vehicle with flexible body dynamics

Author(s):  
Shuhong Li ◽  
Yueqing Zhou
2019 ◽  
Vol 90 ◽  
pp. 1-18 ◽  
Author(s):  
Yibo Ding ◽  
Xiaogang Wang ◽  
Yuliang Bai ◽  
Naigang Cui

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Bailing Tian ◽  
Wenru Fan ◽  
Qun Zong ◽  
Jie Wang ◽  
Fang Wang

This paper describes the design of a nonlinear robust adaptive controller for a flexible hypersonic vehicle model which is nonlinear, multivariable, and unstable, and includes uncertain parameters. Firstly, a control-oriented model is derived for controller design. Then, the model analysis is conducted for this model via input-output (I/O) linearized technique. Secondly, the sliding mode manifold is designed based on the homogeneity theory. Then, the adaptive high order sliding mode controller is designed to achieve the tracking for hypersonic vehicle where the upper bounds of the uncertainties are not known in advance. Furthermore, the stability of the system is proved via the Lyapunov theory. Finally, the Monte-Carlo simulation results on the full-order nonlinear model with aerodynamic uncertainties are provided to demonstrate the effectiveness of the proposed control strategy.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Wenru Fan ◽  
Bailing Tian

A multivariable super-twisting sliding mode controller and disturbance observer with gain adaptation, chattering reduction, and finite time convergence are proposed for a generic hypersonic vehicle where the boundary of aerodynamic uncertainties exists but is unknown. Firstly, an input-output linearization model is constructed for the purpose of controller design. Then, the sliding manifold is designed based on the homogeneity theory. Furthermore, an integrated adaptive multivariable super-twisting sliding mode controller and disturbance observer are designed in order to achieve the tracking for step changes in velocity and altitude. Finally, some simulation results are provided to verify the effectiveness of the proposed method.


2019 ◽  
Vol 11 (12) ◽  
pp. 168781401989585 ◽  
Author(s):  
Seongsu Kim ◽  
Juhwan Choi ◽  
Jin-Gyun Kim ◽  
Ryo Hatakeyama ◽  
Hiroshi Kuribara ◽  
...  

In this work, we propose a robust modeling and analysis technique of the piston-lubrication system considering fluid–structure interaction. The proposed schemes are based on combining the elastohydrodynamic analysis and multi-flexible body dynamics. In particular, multi-flexible body dynamics analysis can offer highly precise numerical results regarding nonlinear deformation of the piston skirt and cylinder bore, which can lead to more accurate results of film thickness for gaps filled with lubricant and of relative velocity of facing surfaces between the piston skirt and the cylinder block. These dynamic analysis results are also used in the elastohydrodynamic analysis to compute the oil film pressure and asperity contact pressure that are used as external forces to evaluate the dynamic motions of the flexible bodies. A series of processes are repeated to accurately predict the lubrication characteristics such as the clearance and oil film pressure. In addition, the Craig–Bampton modal reduction, which is a standard type of component mode synthesis, is employed to accelerate the computational speed. The performance of the proposed modeling schemes implemented in the RecurDyn™ multi-flexible body dynamics environment is demonstrated using a well-established numerical example, and the proposed simulation methods are also verified with the experimental results in a motor cycle engine (gasoline) which has a four cycle, single cylinder, overhead camshaft (OHC), air cooled.


Sign in / Sign up

Export Citation Format

Share Document