A Novel Instability and LCC/VSC HVDC Power Recovery by Voltage Clamping Effect of Electro-Mechanical Transient Oscillation Center

Author(s):  
Yilang Jiang ◽  
Yiying Gao

Potassium chloride is the major salt recycled in most insect excretory systems. Ion and water reabsorption occur in the rectum by active transport of Cl- and largely passive movement of K+. Both these processes are stimulated several fold by a neuropeptide hormone acting via cyclic AMP (cAMP). This Cl- transport process was investigated by using intracellular ion-sensitive microelectrodes, radiotracer flux measurements, voltage clamping, ion substitutions and inhibitors. The mucosal entry step for Cl- is energy-requiring and highly selective, and is stimulated directly by cAMP and luminal K +. Under some experimental conditions, measured electrochemical potentials for cations across the mucosal membrane are too small to drive Cl- entry by NaCl or KC1 cotransport mechanisms; moreover, net 36C1- flux is independent of the apical Na+ potential. Similarly no evidence for a HCO 3 -Cl- exchange was obtained. We conclude that Cl- transport in locust gut is different from mechanisms currently proposed for vertebrate tissues.


2021 ◽  
Vol 68 (10) ◽  
pp. 5326-5329
Author(s):  
Gaoqiang Deng ◽  
Zhen Ma ◽  
Xiaorong Luo ◽  
Xintong Xie ◽  
Congcong Li ◽  
...  
Keyword(s):  
Turn On ◽  

Author(s):  
Hee-Won Jang ◽  
Hyun-Sik Kim ◽  
Seong-Ho Ham

1984 ◽  
Vol 246 (5) ◽  
pp. G574-G579
Author(s):  
G. W. Kidder ◽  
M. G. Elrod

Changing the potential across the isolated frog gastric mucosa by voltage clamping changes the measured resistance of the tissue in two ways. An immediate change in resistance results from changing the measuring position on the nonlinear current-voltage (I-V) plot. Subsequent to this, the resistance changes slowly with a half-time of about 3 min, a change that is not predicted by a previous model for voltage transients and that implies slow changes in membrane resistance following changes in intracellular ion content. The I-V plot over the range examined shows three breakpoints; changing clamp voltage alters the position of two of these breakpoints as well as the slope of the connecting resistances. The central breakpoint agrees with the potential at zero current and varies with it as the clamp potential is changed, as predicted from a diode model for breakpoint generation.


Author(s):  
I K Smith

The world market for systems for power recovery from low-grade heat sources is of the order of £1 billion per annum. Many of these sources are hot liquids or gases from which conventional power systems convert less than 2.5 per cent of the available heat into useful power when the fluid is initially at a temperature of 100° C rising to 8–9 per cent at an initial temperature of 200°C. Consideration of the maximum work recoverable from such single-phase heat sources leads to the concept of an ideal trilateral cycle as the optimum means of power recovery. The trilateral flash cycle (TFC) system is one means of approaching this ideal which involves liquid heating only and two-phase expansion of vapour. Previous work related to this is reviewed and details of analytical studies are given which compare such a system with various types of simple Rankine cycle. It is shown that provided two-phase expanders can be made to attain adiabatic efficiencies of more than 75 per cent, the TFC system can produce outputs of up to 80 per cent more than simple Rankine cycle systems in the recovery of power from hot liquid streams in the 100–200°C temperature range. The estimated cost per unit net output is approximately equal to that of Rankine cycle systems. The preferred working fluids for TFC power plants are light hydrocarbons.


Sign in / Sign up

Export Citation Format

Share Document