Automatic power control method of regional power grid considering voltage control electrolytic aluminum load

Author(s):  
Wenbo Mao ◽  
Lingling Pan ◽  
Feng Li ◽  
Peng Xu
Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2435 ◽  
Author(s):  
Daliang Yang ◽  
Li Yin ◽  
Shengguang Xu ◽  
Ning Wu

The conventional control method for a single-phase cascaded H-bridge (CHB) multilevel converter is vector (dq) control; however, dq control requires complicated calculations and additional time delays. This paper presents a novel power control strategy for the CHB multilevel converter. A power-based dc-link voltage balance control is also proposed for unbalanced load conditions. The new control method is designed in a virtual αβ stationary reference frame without coordinate transformation or phase-locked loop (PLL) to avoid the potential issues related to computational complexity. Because only imaginary voltage construction is needed in the proposed control method, the time delay from conventional imaginary current construction can be eliminated. The proposed method can obtain a sinusoidal grid current waveform with unity power factor. Compared with the conventional dq control method, the power control strategy possesses the advantage of a fast dynamic response. The stability of the closed-loop system with the dc-link voltage balance controller is evaluated. Simulation and experimental results are presented to verify the accuracy of the proposed power and voltage control method.


Author(s):  
Do Xuan Quyet

In this paper, we present a power optimization solution based on the automatic power control method using a closed-loop algorithm for the uplink power control device (UPC) of the satellite communication HUB station. The results are evaluated by theoretical analysis and validated by simulation model on Matlab software, finally the model has also been used in the UPC device and tested in practice. The simulation process, and the test is carried out under the impact of varying rainfall on the wave path, the results are compared with the solutions that have been and are being used to demonstrate the effectiveness of the solution. This paper is the research product of the project "Researching, designing and manufacturing the uplink power controller military satellite communication system".


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4364 ◽  
Author(s):  
Ou-Yang ◽  
Long ◽  
Du ◽  
Diao ◽  
Li

As loads connected to active distribution network (ADN) grow, ADN’s voltage safety issues are becoming more serious. At present, the solution is mainly to build more distributed generation (DG) or to adjust the reactive power in the whole network, but the former needs a lot of investment while the latter requires a large amount of communication equipment and it takes a long time to calculate the adjustment amount of reactive power and to coordinate reactive power compensation equipment. When the loads are heavy, there will still be drawbacks of insufficient reactive power. Therefore, this paper analyzes the relationship between the active power, reactive power, and the voltage in the ADN. Through the autonomous region (AR) division, a voltage control method based on the active power variation and adjustable power in the AR is proposed. According to the relationship between the amount of active power and the adjustable amount active power, the active power control, the reactive power control, and the coordinated control of active power reactive power control are adopted to adjust the DGs’ output to stabilize the bus voltage. The simulation results show that the proposed method can effectively improve the voltage control capability of ADN and can enable it to operate normally under greater power changes. Through the control method in this paper, the communication requirements are greatly reduced and the calculation time is effectively shortened and is more adaptable.


2016 ◽  
Vol 839 ◽  
pp. 54-58 ◽  
Author(s):  
Piyadanai Pachanapan ◽  
Phudit Inthai

A micro static var compensator (µSVC) is introduced in this work to prevent the over-voltage problems in radial distribution networks with high number of rooftop photovoltaic (PV) connections. The µSVC is aimed to use in the PV system that has the fixed-power factor inverter, which cannot provide the active voltage controllability. The µSVC is a small shunt compensator installed parallel with the PV system and providing the automatic reactive power support to deal with the dynamic voltage variations at the point of common coupling. Two reactive power control methods, Q(P) and Q(V), can be employed into each µSVC depending on the location of PV systems. Moreover, the coordinated reactive power control among µSVCs, without communication system requirement, is presented for enhancing the Volt-Var controllability to the group of PV systems located in the same feeder. The dynamic voltage control performances are examined on simulation in DIgSILENT PowerFactory software. The results showed that the proposed control method can mitigate the rise of voltage level sufficiently.


Sign in / Sign up

Export Citation Format

Share Document