A Novel Two-Terminal Underground Cable Incipient Fault Location Based on Zero Sequence Circuit

Author(s):  
Ke Qu ◽  
Weibin Zheng ◽  
Wenhai Zhang ◽  
Xianyong Xiao
2020 ◽  
Vol 10 (4) ◽  
pp. 1203 ◽  
Author(s):  
Chaichan Pothisarn ◽  
Jittiphong Klomjit ◽  
Atthapol Ngaopitakkul ◽  
Chaiyan Jettanasen ◽  
Dimas Anton Asfani ◽  
...  

This paper presents a comparative study on mother wavelets using a fault type classification algorithm in a power system. The study aims to evaluate the performance of the protection algorithm by implementing different mother wavelets for signal analysis and determines a suitable mother wavelet for power system protection applications. The factors that influence the fault signal, such as the fault location, fault type, and inception angle, have been considered during testing. The algorithm operates by applying the discrete wavelet transform (DWT) to the three-phase current and zero-sequence signal obtained from the experimental setup. The DWT extracts high-frequency components from the signals during both the normal and fault states. The coefficients at scales 1–3 have been decomposed using different mother wavelets, such as Daubechies (db), symlets (sym), biorthogonal (bior), and Coiflets (coif). The results reveal different coefficient values for the different mother wavelets even though the behaviors are similar. The coefficient for any mother wavelet has the same behavior but does not have the same value. Therefore, this finding has shown that the mother wavelet has a significant impact on the accuracy of the fault classification algorithm.


Before attempting to locate underground cable faults on direct buried primary cable, it is necessary to know where the cable is located and what route it takes. If the fault is on secondary cable, knowing the exact route is even more critical. Since it is extremely difficult to find a cable fault without knowing where the cable is, it makes sense to master cable locating and tracing and to do a cable trace before beginning the fault locating process. Success in locating or tracing the route of electrical cable and metal pipe depends upon knowledge, skill, and perhaps, most of all, experience. Although locating can be a complex job, it will very likely become even more complex as more and more underground plant is installed. It is just as important to understand how the equipment works as it is to be thoroughly familiar with the exact equipment being used.


Author(s):  
Marian Dragomir ◽  
Anamaria Iamandi ◽  
Marcel Istrate ◽  
Alin Dragomir ◽  
Dragos Machidon

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1293 ◽  
Author(s):  
Krzysztof Lowczowski ◽  
Jozef Lorenc ◽  
Jozef Zawodniak ◽  
Grzegorz Dombek

The paper analyzes the utilization of cable screen currents for earth fault identification and location. Attention is paid on cable and mixed feeders—cable and overhead lines. The principle of operation is based on utilization of 3 criterion values: Ratio of cable screen earthing current and zero sequence cable core current—RF110/15, phase shift between cable screen earthing current and zero sequence cable core current—α and cable screen admittance defined as a ratio of cable screen earthing current and zero sequence voltage—Y0cs. Earth fault location is possible thanks to discovered relation between RF110/15 and α, whereas Y0cs allows for reliable detection of earth faults. Detection and identification are very important because it allows to increase the reliability of supply—reduce downtime and number of consumers affected by the fault. The article presents a phase to ground fault current flow for different power system configurations. At the end solution, which improves location capabilities is proposed. The solution is analyzed in PSCAD software and verified by network experiment.


2017 ◽  
Vol 32 (3) ◽  
pp. 1450-1459 ◽  
Author(s):  
Wenhai Zhang ◽  
Xianyong Xiao ◽  
Kai Zhou ◽  
Wilsun Xu ◽  
Yindi Jing

Author(s):  
Arturo Suman Bretas ◽  
Andrés Ricardo Herrera‐Orozco ◽  
Cesar Augusto Orozco‐Henao ◽  
Leonardo Ulises Iurinic ◽  
Juan Mora‐Flórez

Sign in / Sign up

Export Citation Format

Share Document