High quality power factor correctors based on series-switching post-regulators

Author(s):  
M.M. Hernando ◽  
J. Sebastian ◽  
P. Villegas ◽  
J.A. Martinez
Keyword(s):  
Author(s):  
Francisco G. Montoya ◽  
Alfredo Alcayde ◽  
Francisco M. Arrabal-Campos ◽  
Raul Baños

Non-linear loads in circuits cause the appearance of harmonic disturbances both in voltage and current. In order to minimize the effects of these disturbances and, therefore, to control over the flow of electricity between the source and the load, they are often used passive or active filters. Nevertheless, determining the type of filter and the characteristics of their elements is not a trivial task. In fact, the development of algorithms for calculating the parameters of filters is still an open question. This paper analyzes the use of genetic algorithms to maximize the power factor compensation in non-sinusoidal circuits using passive filters, while concepts of geometric algebra theory are used to represent the flow of power in the circuits. According to the results obtained in different case studies, it can be concluded that the genetic algorithm obtain high quality solutions that could be generalized to similar problems of any dimension.


2000 ◽  
Vol 626 ◽  
Author(s):  
Leonid G. Fel ◽  
Yakov M. Strelniker ◽  
David J. Bergman

ABSTRACTThe thermoelectric power factor has been calculated for a two-constituent composite medium, where one constituent is a “high quality thermoelectric” while the other constituent is a “benign metal”, with large electrical and thermal conductivities but poor thermoelectric properties. It was recently discovered that, in such a mixture, the power factor could be greatly enhanced by an appropriate choice of microstructure. Here we report on a study of three periodic microstructures with cubic point symmetry under rotations: simple cubic (SC), body centered cubic (BCC), and face centered cubic (FCC) arrays of identical spheres of the benign metal embedded in the high quality thermoelectric host. We show detailed results for these microstructures in the case where the benign metal constituent is Copper, while the high quality thermoelectric constituent is the thermoelectric alloy (Bi2Te3)0.2 (Sb2Te3)0.8.


2017 ◽  
Vol 12 (1) ◽  
pp. 20-26 ◽  
Author(s):  
Oleksandr Bondarenko ◽  
Ievgen Verbytskyi ◽  
Vadym Prokopets ◽  
Oleksandr Kaloshyn ◽  
Denys Spitsyn ◽  
...  

Abstract The study is devoted to the important issue of enhancing the circuitry and characteristics of power supplies for micro resistance welding machines. The aim of the research is to provide high quality input current and to increase the energy efficiency of the output pulse generator by means of improving the circuit topologies of the power supply main blocks. In study, the principle of constructing the power supply for micro resistance welding, which provides high values of output welding current and high accuracy of welding pulse formation, makes it possible to reduce energy losses, and provides high quality of consumed input current, is represented. The multiphase topology of the charger with power factor correction based on SEPIC converters is suggested as the most efficient for charging the supercapacitor storage module. The multicell topology of the supercapacitor energy storage with voltage equalizing is presented. The parameters of the converter cells are evaluated. The calculations of energy efficiency of the power supply’s input and output converters based on suggested topologies are carried out and verified in MATLAB Simulink. The power factor value greater than 99 % is derived.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2805
Author(s):  
Akihiro Tsuruta ◽  
Miki Tanaka ◽  
Masashi Mikami ◽  
Yoshiaki Kinemuchi ◽  
Yoshitake Masuda ◽  
...  

The Na0.5Co0.9Cu0.1O2 thick film with the same thermoelectric performance as a Na0.5CoO2 bulk was formed on an alumina substrate by the screen-printing process. The power factor exceeded 0.3 mW/K2m, with the resistivity of 3.8 mΩcm and the thermopower of 108 μV/K. The thick film without any cracks strongly adhered to the substrate. The high-quality thick film had been realized through the carefully designed and improved process, mixing NaCl to promote the anisotropic sintering of Na0.5Co0.9Cu0.1O2, inserting a CuO interlayer to adhere the film and substrate, and Co–Cu substituting Cu for Co to control the sintering temperature.


1966 ◽  
Vol 24 ◽  
pp. 51-52
Author(s):  
E. K. Kharadze ◽  
R. A. Bartaya

The unique 70-cm meniscus-type telescope of the Abastumani Astrophysical Observatory supplied with two objective prisms and the seeing conditions characteristic at Mount Kanobili (Abastumani) permit us to obtain stellar spectra of a high quality. No additional design to improve the “climate” immediately around the telescope itself is being applied. The dispersions and photographic magnitude limits are 160 and 660Å/mm, and 12–13, respectively. The short-wave end of spectra reaches 3500–3400Å.


Author(s):  
R. L. Lyles ◽  
S. J. Rothman ◽  
W. Jäger

Standard techniques of electropolishing silver and silver alloys for electron microscopy in most instances have relied on various CN recipes. These methods have been characteristically unsatisfactory due to difficulties in obtaining large electron transparent areas, reproducible results, adequate solution lifetimes, and contamination free sample surfaces. In addition, there are the inherent health hazards associated with the use of CN solutions. Various attempts to develop noncyanic methods of electropolishing specimens for electron microscopy have not been successful in that the specimen quality problems encountered with the CN solutions have also existed in the previously proposed non-cyanic methods.The technique we describe allows us to jet polish high quality silver and silver alloy microscope specimens with consistant reproducibility and without the use of CN salts.The solution is similar to that suggested by Myschoyaev et al. It consists, in order of mixing, 115ml glacial actic acid (CH3CO2H, specific wt 1.04 g/ml), 43ml sulphuric acid (H2SO4, specific wt. g/ml), 350 ml anhydrous methyl alcohol, and 77 g thiourea (NH2CSNH2).


Author(s):  
A. V. Crewe ◽  
J. Wall ◽  
L. M. Welter

A scanning microscope using a field emission source has been described elsewhere. This microscope has now been improved by replacing the single magnetic lens with a high quality lens of the type described by Ruska. This lens has a focal length of 1 mm and a spherical aberration coefficient of 0.5 mm. The final spot size, and therefore the microscope resolution, is limited by the aberration of this lens to about 6 Å.The lens has been constructed very carefully, maintaining a tolerance of + 1 μ on all critical surfaces. The gun is prealigned on the lens to form a compact unit. The only mechanical adjustments are those which control the specimen and the tip positions. The microscope can be used in two modes. With the lens off and the gun focused on the specimen, the resolution is 250 Å over an undistorted field of view of 2 mm. With the lens on,the resolution is 20 Å or better over a field of view of 40 microns. The magnification can be accurately varied by attenuating the raster current.


Sign in / Sign up

Export Citation Format

Share Document