High-speed Linear Optical Beam Steering Using Large Format GaAs/Si-CMOS Spatial Light Modulators

Author(s):  
J.A. Trezza ◽  
K. Kang ◽  
R. Stack
Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 288
Author(s):  
Suetying Ching ◽  
Chakming Chan ◽  
Jack Ng ◽  
Kokwai Cheah

Metals are commonly used in plasmonic devices because of their strong plasmonic property. However, such properties are not easily tuned. For applications such as spatial light modulators and beam steering, tunable plasmonic properties are essential, and neither metals nor other plasmonic materials possess truly tunable plasmonic properties. In this work, we show that the silver alloy silver–ytterbium (Ag-Yb) possesses tunable plasmonic properties; its plasmonic response strength can be adjusted as a function of Yb concentration. Such tunability can be explained in terms of the influence of Yb on bound charge and interaction of its dielectric with the dielectric of Ag. The change in transition characteristics progressively weakens Ag’s plasmonic properties. With a spectral ellipsometric measurement, it was shown that the Ag-Yb alloy thin film retains the properties of Ag with high transmission efficiency. The weakened surface plasmon coupling strength without dramatic change in the coupling wavelengths implies that the tunability of the Ag-Yb alloy is related to its volume ratio. The principle mechanism of the plasmonic change is theoretically explained using a model. This work points to a potential new type of tunable plasmonic material.


Photonics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 62
Author(s):  
Remington S. Ketchum ◽  
Pierre-Alexandre Blanche

Micro-electro mechanical systems (MEMS)-based phase-only spatial light modulators (PLMs) have the potential to overcome the limited speed of liquid crystal on silicon (LCoS) spatial light modulators (SLMs) and operate at speeds faster than 10 kHz. This expands the practicality of PLMs to several applications, including communications, sensing, and high-speed displays. The complex structure and fabrication requirements for large, 2D MEMS arrays with vertical actuation have kept MEMS-based PLMs out of the market in favor of LCoS SLMs. Recently, Texas Instruments has adapted its existing DMD technology for fabricating MEMS-based PLMs. Here, we characterize the diffraction efficiency for one of these PLMs and examine the effect of a nonlinear distribution of addressable phase states across a range of wavelengths and illumination angles.


Science ◽  
2019 ◽  
Vol 364 (6445) ◽  
pp. 1087-1090 ◽  
Author(s):  
Shi-Qiang Li ◽  
Xuewu Xu ◽  
Rasna Maruthiyodan Veetil ◽  
Vytautas Valuckas ◽  
Ramón Paniagua-Domínguez ◽  
...  

Rapidly developing augmented reality, solid-state light detection and ranging (LIDAR), and holographic display technologies require spatial light modulators (SLMs) with high resolution and viewing angle to satisfy increasing customer demands. Performance of currently available SLMs is limited by their large pixel sizes on the order of several micrometers. Here, we propose a concept of tunable dielectric metasurfaces modulated by liquid crystal, which can provide abrupt phase change, thus enabling pixel-size miniaturization. We present a metasurface-based transmissive SLM, configured to generate active beam steering with >35% efficiency and a large beam deflection angle of 11°. The high resolution and steering angle obtained provide opportunities to develop the next generation of LIDAR and display technologies.


2021 ◽  
Vol 135 ◽  
pp. 106711
Author(s):  
Svetlana P. Kotova ◽  
Evgeny P. Pozhidaev ◽  
Sergey A. Samagin ◽  
Vladimir V. Kesaev ◽  
Vadim A. Barbashov ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2862
Author(s):  
Yannanqi Li ◽  
Zhiyong Yang ◽  
Ran Chen ◽  
Lingchao Mo ◽  
Juanli Li ◽  
...  

A submillisecond-response and light scattering-free polymer-network liquid crystal (PNLC) for infrared spatial light modulators is demonstrated. Our new liquid crystal host exhibits a higher birefringence, comparable dielectric anisotropy, and slightly lower visco-elastic constant than a commonly employed commercial material, HTG-135200. Moreover, the electro-optical performance of our PNLCs with different monomer concentrations, cell gaps, and liquid crystal (LC) hosts is compared and discussed from four aspects: operating voltage, hysteresis, relaxation time, and light scattering loss. The temperature effect on hysteresis is also analyzed. Potential applications of PNLCs for laser beam steering and spatial light modulators especially in the infrared region are foreseeable.


Nanophotonics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 143-148
Author(s):  
Adrien Descloux ◽  
Marcel Müller ◽  
Vytautas Navikas ◽  
Andreas Markwirth ◽  
Robin van den Eynde ◽  
...  

AbstractSuper-resolution structured illumination microscopy (SR-SIM) can be conducted at video-rate acquisition speeds when combined with high-speed spatial light modulators and sCMOS cameras, rendering it particularly suitable for live-cell imaging. If, however, three-dimensional (3D) information is desired, the sequential acquisition of vertical image stacks employed by current setups significantly slows down the acquisition process. In this work, we present a multiplane approach to SR-SIM that overcomes this slowdown via the simultaneous acquisition of multiple object planes, employing a recently introduced multiplane image splitting prism combined with high-speed SIM illumination. This strategy requires only the introduction of a single optical element and the addition of a second camera to acquire a laterally highly resolved 3D image stack. We demonstrate the performance of multiplane SIM by applying this instrument to imaging the dynamics of mitochondria in living COS-7 cells.


Author(s):  
Mona Jarrahi ◽  
R. Fabian ◽  
W. Pease ◽  
David A. B. Miller ◽  
Thomas H. Lee

2004 ◽  
Vol 43 (7) ◽  
pp. 1559 ◽  
Author(s):  
David Engström ◽  
Sverker Hård ◽  
Per Rudquist ◽  
Koen D’havé ◽  
Tomasz Matuszczyk ◽  
...  

1995 ◽  
Vol 20 (3) ◽  
pp. 342 ◽  
Author(s):  
Chongchang Mao ◽  
Douglas J. McKnight ◽  
Kristina M. Johnson

Sign in / Sign up

Export Citation Format

Share Document