Orientation of the spin of a single NV color center in a diamond nanocrystal, and analysis of its optical transition dipoles

Author(s):  
Dingwei Zheng ◽  
Ngoc Diep Lai ◽  
Xinye Xu ◽  
Francois Treussart ◽  
Jean-Francois Roch
Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1576 ◽  
Author(s):  
Mingyang Yang ◽  
Qilong Yuan ◽  
Jingyao Gao ◽  
Shengcheng Shu ◽  
Feiyue Chen ◽  
...  

The nitrogen-vacancy (NV) color center in chemical vapor deposition (CVD) diamond has been widely investigated in quantum information and quantum biosensors due to its excellent photon emission stability and long spin coherence time. However, the temperature dependence of the energy level of NV color centers in diamond is different from other semiconductors with the same diamond cubic structure for the high Debye temperature and very small thermal expansion coefficient of diamond. In this work, a diamond sensor for temperature measurement with high precision was fabricated based on the investigation of the energy level shifts of NV centers by Raman and photoluminescence (PL) spectra. The results show that the intensity and linewidth of the zero-phonon line of NV centers highly depend on the environmental temperature, and the energy level shifts of NV centers in diamond follow the modified Varshni model very well, a model which is better than the traditional version. Accordingly, the NV color center shows the ability in temperature measurement with a high accuracy of up to 98%. The high dependence of NV centers on environmental temperature shows the possibility of temperature monitoring of NV center-based quantum sensors in biosystems.


2021 ◽  
Vol 18 (11) ◽  
pp. 115201
Author(s):  
Shaozhuo Lin ◽  
Qi Wang ◽  
Hao Guo ◽  
Huanfei Wen ◽  
ZhongHao Li ◽  
...  

2021 ◽  
Author(s):  
Qin-Qin Wang ◽  
Rui-Rong Wang ◽  
Jin-Ping Liu ◽  
Shao-Zhuo Lin ◽  
Liang-Wei Wu ◽  
...  

2017 ◽  
Vol 23 (2) ◽  
pp. 201-207
Author(s):  
许丽 XU Li ◽  
刘阿鹏 LIU A-peng

2019 ◽  
Vol 25 (2) ◽  
pp. 215-220
Author(s):  
宁伟光 NING Wei-guang ◽  
张扬 ZHANG Yang ◽  
李中豪 LI Zhong-hao ◽  
唐军 TANG Jun

2021 ◽  
Vol 70 (14) ◽  
pp. 147601-147601
Author(s):  
Li Zhong-Hao ◽  
◽  
Wang Tian-Yu ◽  
Guo Qi ◽  
Guo Hao ◽  
...  

2020 ◽  
Vol 92 (2) ◽  
pp. 20101
Author(s):  
Behnam Kheyraddini Mousavi ◽  
Morteza Rezaei Talarposhti ◽  
Farshid Karbassian ◽  
Arash Kheyraddini Mousavi

Metal-assisted chemical etching (MACE) is applied for fabrication of silicon nanowires (SiNWs). We have shown the effect of amorphous sheath of SiNWs by treating the nanowires with SF6 and the resulting reduction of absorption bandwidth, i.e. making SiNWs semi-transparent in near-infrared (IR). For the first time, by treating the fabricated SiNWs with copper containing HF∕H2O2∕H2O solution, we have generated crystalline nanowires with broader light absorption spectrum, up to λ = 1 μm. Both the absorption and photo-luminescence (PL) of the SiNWs are observed from visible to IR wavelengths. It is found that the SiNWs have PL at visible and near Infrared wavelengths, which may infer presence of mechanisms such as forbidden gap transitions other can involvement of plasmonic resonances. Non-radiative recombination of excitons is one of the reasons behind absorption of SiNWs. Also, on the dielectric metal interface, the absorption mechanism can be due to plasmonic dissipation or plasmon-assisted generation of excitons in the indirect band-gap material. Comparison between nanowires with and without metallic nanoparticles has revealed the effect of nanoparticles on absorption enhancement. The broader near IR absorption, paves the way for applications like hyperthermia of cancer while the optical transition in near IR also facilitates harvesting electromagnetic energy at a broad spectrum from visible to IR.


2015 ◽  
Vol 7 (3) ◽  
pp. 1923-1930
Author(s):  
Austine Amukayia Mulama ◽  
Julius Mwakondo Mwabora ◽  
Andrew Odhiambo Oduor ◽  
Cosmas Mulwa Muiva ◽  
Boniface Muthoka ◽  
...  

 Selenium-based chalcogenides are useful in telecommunication devices like infrared optics and threshold switching devices. The investigated system of Ge5Se95-xZnx (0.0 ≤ x ≤ 4 at.%) has been prepared from high purity constituent elements. Thin films from the bulk material were deposited by vacuum thermal evaporation. Optical absorbance measurements have been performed on the as-deposited thin films using transmission spectra. The allowed optical transition was found to be indirect and the corresponding band gap energy determined. The variation of optical band gap energy with the average coordination number has also been investigated based on the chemical bonding between the constituents and the rigidity behaviour of the system’s network.


Sign in / Sign up

Export Citation Format

Share Document